Much of ICRAR's work revolves around science associated with the Square Kilometre Array and its precursors.

In broad terms, ICRAR's key research themes are:

Radio astronomy

This includes science with existing world-class radio telescopes in Australia and elsewhere, and preparatory studies for the SKA and precursor telescopes.

There are a number of key research areas.

Galaxy assembly and evolution

Surveys of neutral hydrogen in the nearby Universe had taught astronomers much about the processes by which ordinary gas accretes onto galaxies owing to collisional processes and direct infall. It has also told astronomers about the physical processes involved in the formation of stars.

The challenge for the future is to conduct such surveys in the more distant Universe where the evolution of the properties of galaxies, and even the evolution of the geometry of the Universe itself, can be studied.

The Variable Universe

Many radio sources appear to have a variable energy output. Pulsars are a well-known example, but a myriad of other classes of galactic and extragalactic objects have variable energy output on timescales which range from fractions of a second to years.

Future-sensitive, widefield radio telescopes will be very sensitive to such variability. ICRAR researchers are conducting science and technical research to better understand the phenomenon of variability.

Very Long Baseline Interferometry (VLBI)

Observation of powerful radio sources with high angular resolution is an important technique for studying their structure and motion, and is an important science goal for the SKA. ICRAR researchers are conducting scientific research using VLBI data, and conducting research aimed at improving the VLBI technique using, for example, better and faster data transport mechanisms.

Data-intensive science

The progression from the relatively small data volumes produced by most current radio telescopes to the huge amount to be generated by next-generation telescopes will be a challenge for astronomers.

ICRAR researchers are conducting studies into systems capable of dealing with the storage and serving of large data volumes, as well as in techniques required to process such volumes.


The SKA relies on low-cost, high-capability hardware. Engineering research at ICRAR is helping to meet this challenge in a number of areas, including the development of Aperture Arrays, which are radio telescopes with no moving parts, designed to be steered electronically.

The development of such widefield, wideband systems operating to frequencies close to 1 Gigahertz is a key technical goal for the SKA.

“The scientific opportunities of the SKA and ASKAP are immense - ICRAR researchers are proud to be working on radio astronomy projects with colleagues from around the world”.


Research Leaders

Andreas Wicenec, Credit: Magdeline Lum
Andreas Wicenec
Research Professor
ICT Program Head

Managing thousands of terabytes

The radio telescope arrays being developed by scientists and engineers around the world will generate enormous volumes of data far beyond the capabilities of today's computing technology.

Research Professor Andreas Wicenec is faced with the challenge of transmitting, storing and processing the data captured by the proposed arrays of antennas.

An eight-hour survey of the sky can generate terabytes of data, which must then be sent to Perth via high capacity networks.  Efficient, reliable storage systems are needed to ensure the data is protected and accessible.  Andreas and his team must also design the processing systems needed to work with and make sense of the information.

"There is no point in building a radio telescope of this size if we don't have the information systems to interpret what it captures."

Image Credit: Magdeline Lum

Footnote links and information

This page:

Last updated
Wednesday, 20 June, 2012 2:05 PM
Website feedback
Page ID