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The Old, Metal-Rich Milky Way

Most stars in the central regions of the Milky Way
are old, certainly formed prior to redshift unity,
8Gyr ago — bulge/bar, inner thick disk, thin disk

A large fraction of these old stars are chemically
enriched, above [Fe/H] — —0.5

A significant fraction of these old stars are very
metal-rich, around solar, of order the yield for
standard stellar IMF and nucleosynthesis/ejecta

This suggests quenching of early star formation
due to gas exhaustion, with some gas inflow but
not much outflow



[mplications of
e Old, Metal-Rich Milky Way

Stars In inner regions formed In deep enough
potential well to retain enriched gas and cycle
through many generations of stars, despite stellar
feedback, and evolve rapidly towards the yield

Bulge/bar plausibly formed from gravitationally
unstable, massive inner stellar disk, itself formed
within a deep potential well

Last significant merger ~ 10Gyr ago formed the thick
disk and both brought in new gas and drove in situ

disk gas inwards (cf Wyse 2001; Brook et al 2004;
Belokurov et al 2018; Helmi et al 2018; Haywood et al 2018;
Gallart et al 2018; Grand et al 2020....)



[mplications of
The Old, Metal-Rich Milky Way

High star-formation rate at epoch of formation of

iInner disk/thick disk/bulge within deep enough

potential well to allow self-enrichment (see also Conroy

et al 2022; Snaith et al 2022)

= Conservative estimate ~ 2 x 10!%M stellar mass with
[Fe/H] > -0.5 and age > 8Gyr

m Most (—75%) of the old stars in the Galaxy are at least
this metal-rich

Expect to observe fairly luminous, chemically evolved,
centrally concentrated proto-galaxies at high redshift
(10Gyr =2 z — 2; 12Gyr =2 z — 4)



More Implications of
The Old, Metal-Rich Milky Way

ACDM simulations of Milky Way analogues, with
early star formation in low-mass systems and stellar
feedback quenching star formation, produce mainly
metal-poor old stars (e.g. El-Badry et al 2018), do
not create a dominant old, metal-rich stellar
population

Plausibly reflects truncation of chemical enrichment
due to inability of early-forming substructure to retain
gas

Another aspect of tensions’ between predictions of
ACDM on galactic scales and observations, again

could be indicative of too much power on small
scales




Predictions from ACDM
Zoom-in Simulations Milky Way analog
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Predictions from ACDM
Zoom-in Simulations Milky Way analog
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Predictions from ACDM
Zoom-in Simulations Milky Way analog
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Predictions from ACDM
Zoom-in Simulations Milky Way analog
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Old, metal-rich stars in the Milky Way Bulge/Bar

= APOGEE spectra contain both age (C/N ratio) and metallicity
(elemental abundances) information

= Training set with isochrone-based ages used to determine
age-metallicity data for ~6000 metal-rich ([Fe/H] > —0.5)
low-gravity giants in the inner Galaxy, R < 3.5kpc (Hasselquist
et al 2020): many metal-rich, old stars, ages > 10Gyr
|Zec| < 025kpe  025kpe < |Zge| < 0.50kpe 0.50kpe < |Zgo| < 1.0kpe 1.0kpe < |Zge| < 1.5kpe log(N)

Az ~ 0.0036 G’yr_l Az ~ 0003 Gyr_l Az ~ 0.0024 G‘yr_l Az ~ 0.0013 G'yr_l 2.00
{175

4150

0.5

L= a
.
o

1.25
1.00
0.75
0.50

s A 7 = 0,006 Giyr 1 ; :
- = = Az=0.0034 Gyr 1 » Bensby|| ® o  Bensby

0.25

0.00

16.2 lUI'.O 918 9:6 9:4 9:2 9:0 3:8 16.216.0 9:3 9:6 9:4 9:2 9:0 8I.8 16.2 16.0 9:8 9:6 9:4 9:2 9:0 8:3 16.2 10I.0 9:8 9:6 9:4 9:2 9:0 8.8
1
Mean Solar 1°8(@ge) log(age) log(age) og(age)

iron at age  8.7Gyr 71.7Gyr 1.2Gyr



A

licity relations for bulge region
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Simulated age-metallicity relations for bulge region
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Simulated age-metallicity relations for bulge region
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[Implications of
The Old, Metal-Rich Milky Way

Assuming Milky Way typical, expect to observe fairly
luminous, chemically evolved, centrally concentrated
proto-galaxies at high redshift (10Gyr - z ~ 2; 12Gyr -

z ~4) -- JWST

ACDM simulations of Milky Way analogues, with
early star formation in low-mass systems and stellar
feedback quenching star formation do not create a
dominant old, metal-rich stellar population

Plausibly reflects truncation of chemical enrichment due
to inability of early-forming substructure to retain gas

Another aspect of "tensions’ between predictions of
ACDM on galactic scales and observations, possibly
Indicative of too much power on small scales






Old, metal-rich stars in the Milky Way
The bulge/bar:

= Several CMD-based analyses have all bulge stars older

log(N)

than 8 Gyr, with population of blue stragglers (descendants?)
= Optical HST data (Clarkson et al 2011; Renzini et al 2018)

= IR + spectroscopic metallicity distribution (Surot et al 2019)
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Old, metal-rich stars in the Milky Way

The bulge/bar:

Others find that for stars above solar metallicity, only

~ 60% are older than 8Gyr and between -0.5 dex and
solar metallicity, ~80% are older than 8Gyr (no BSS)
Bensby et al 17: micro-lensed dwarfs (but see Joyce et al 22)
Bournard et al 2018: same HST dataset as Renzini et al,
different analysis approach (fits to synthetic CMDs created by

i ‘Cleanast’ RGBs
1.2~ - — - Bensby+17 dwarfs
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Old, metal-rich stars in the Milky Way
The bulge/bar:

Chemodynamic analysis fitting star counts and
kinematics with adopted (spectroscopic) metallicity
distribution and 10Gyr age finds stellar mass of

bulge/bar ~ 2 x 101°Mg  (Portail et al 2017; cf Zoccali et al
2017)

=» Conservative consensus of published analyses:
More than 50% (—70%) of stellar mass, — 1.4 X
101%Mg, is older than 8 Gyr and more metal-rich than
[Fe/H] = —-0.5
= Includes ~ 30% of bulge/bar mass being above solar
metallicity and older than 8 Gyr



Old, metal-rich stars in the Milky Way

The thick disk: stellar mass — 1/5 that of thin disk,
~ 6 X 10°Mg, older than 8 Gyr (some BSS) with mean
[Fe/H] > —0.5 = ~3 x 10°Mg above -0.5 dex

m Little evidence for radial metallicity gradient (Hayden et al '15;
Steinmetz et al 2019)

0.25
0O0=£ex0.2 median: [Fe/H]|=-0.44 02xsex04 medlen: [FefH|=-0.46 4= =<0, median: [Fe/H]=-0.54
N=1702 2= T N=2592 2xZpncd N =1094

Eccentric orbits

<z, . (kpc) <3  [Circular
"7 |Qrbits

o.2s | [
2=ec04 median: [FefH]|=-0.33 04=e<06
M=

~Median = -0.44 dex =~

=

1<z,.(Kpc)<2 P

5-1.00—0.75-0.50—0. . . —0.75-0.50 -0.25
[Fe/H] metal | ICIty [FerH]



Old, metal-rich stars in the Milky Way

= The thick disk: stellar mass — 1/5 that of thin disk,
~ 6 X 10°Mg, older than 8 Gyr (some BSS) with mean

[Fe/H] > —0.5
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age [Gyr]

Old, metal-rich stars in th

e Milky Way

The thick disk: stellar mass ~ 1/5 that of thin disk,
~ 6 X 10°Mg, older than 8 Gyr (some BSS) with mean
[Fe/H] > —=0.5 = ~ 4 x 10°M, older than 8 Gyr and

above -0.5 dex Mackereth et al 2017
2R, bot = | | | LRy ot = - 0.16
121 171734 (stat.) ¥ g (syst.) Mg pe—? § 3. B_}-_g:ﬁ(stat )13 .8 (syst.) Mg peT| 0.14
10 . ‘1 MR
— 0.12 Io
sl S 1 f{o-10 %
| {[::2S o=
. I o i . 1
4} Thin disk 1 Ho4.% 2| Thick disk 1 Hooa 5
o | Low [afFe - | [{0-2 | High [a.] | [Ho.02
— 0.0 ' : —1 (.00
—-0.6 —0 4 —O 2 0.0 0.2 -06 -04 =02 0.0 0.2
[Fe/H] ages from [C/N] [Fe/H]

Note even in local thin disk, peak iron abundance for stars

older than 8Gyr is around solar
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Old, metal-rich stars in the Milky Way

Inner thin disk: mass within 5kpc (half-length of
bar) ~ 101%Mg, (Portail et al 2017a)

x Chemodynamic modelling (Portail et al 2017b), assuming

age 10Gyr:
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Old, metal-poor stars in the Milky Way

~ 50% of thick disk below -0.5 dex, ~ 3 x 10°Mg
= Dominates the “metal-poor’ old stars

stellar halo: vast majority of stars have metallicity
below -1 dex, older than 8Gyr

= Both accreted (e.g. Belokurov et al 2018) and in situ (Rix et
al 2022)

= around 1% of total MW stellar mass, or ~ 5 x 108Mg

Metal-poor thin disk, extends to below -1 locally, but
hard to quantify stellar mass (or age) especially In
Inner regions of the Galaxy (Conroy et al 2022)



Predictions from ACDM
Zoom-in Simulations Milky Way analog
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Conclusions

Most stars in the Milky Way that formed prior to
redshift unity have metallicity above -0.5 dex

s MWG: —80% above -0.5 dex, —30% above solar

= Unlike predicted distribution for MWG analog in
ACMD simulation (FIRE)

Centrally concentrated — bulge/bar/inner disk

Likely formed in deep potential well, due to massive
substructure, that could sustain high star-formation
rate and rapid chemical enrichment to completion

= Inside-out quenching at early times (cf Tachella et
al 2015), due to exhaustion of gas — supply
driven by merging(?)



Old Metal-Rich Stars in M31

PHAT team analysed HST data for evolved stars in

fields covering 2 < R < 20kpc and found ‘most stars

are metal rich and most metal rich stars are older

than 8Gyr’ (Williams et al 2017)

m —~1/3 of stellar mass within 5kpc of the center is older than
8Gyr and has metallicity above -0.4dex

Consistent result using deeper data, down to old

main sequence turn-off, for outer disk at R > 20kpc

(Bernard et al 2015): [Fe/H] = -0.4 dex, 10Gyr ago

Halo of M31 dominated by old, metal-rich
population, > -0.6 dex (e.g. Ibata et al 2014)



Old Metal-Rich Stars in M31

= Stellar populations in inner disk and bulge analysed
through IFU spectroscopic data (Saglia et al 2018),

= Dominated by stars older than 10Gyr and around
ar metallicity (Lick indices)
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Old, metal-rich stars in the Milky Way

= Inner thin disk: metal-rich, above -0.5 dex, age-
metallicity trend
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Pred
= Early cosmologica
the metallicity and

ictions from ACDM

simulations could make predictions for
age distributions of entire galaxies only

Lacked resolution for more detailed study

s Predict most stars are too old and too metal-poor

=>» Stellar feedback needed to prevent too much early star
formation in small-scale structure
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Coloured points:

Bensby et al 2017 Microlensed dwarfs in bulge
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Old, metal-rich stars in the Milky Way

The bulge/bar: From CMD, more than 80%,
stellar mass ~ 10%Mg,
more metal-rich than [Fe/H] = —-0.5

3500

=

bV
1 Tal g

R T
Ness et al, ARGOS

-0.5 00
[Fe/H]

0.5

Is older than 8 Gyr and

Chemodynamic
modelling of inner 5kpc,
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2017Db)



Conclusions

Most stars in the Milky Way (and M31) that formed
prior to redshift unity have metallicity above -0.5 dex

s MWG: 80% above -0.5 dex, —~30% above solar

= Unlike predicted distribution for MWG analogues In
ACMD simulations

Centrally concentrated — bulge/bar/inner disk/thick disk

Likely formed in deep potential well, due to massive
substructure, that could sustain high star-formation
rate and rapid chemical enrichment

= Another aspect of the small-scale tensions between
ACMD and observations?

- Too much small-scale power



Predictions from ACDM

m Early cosmological simulations could make predictions for
the metallicity and age distributions of entire galaxies only

Lacked resolution for more detailed study
s Predict most stars are old and metal-poor, metallicity

d|str|but|on poor match to observations |callazzi et al 2008
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