A Fresh Perspective on the Assembly of Mass

Danail Obreschkow

Ken Freeman @ 80 Conference 22 September 2022

"Characterising the structure of halo merger trees using a single parameter: the tree entropy" Obreschkow, Elahi, Lagos, Poulton, Ludlow MNRAS 493 (2020)

International Centre for Radio Astronomy Research

Binary merger

Binary merger

Minimal tree

Minimal tree

Norfolk pine

Scale-invariance

Scale-invariance

 $s_{\rm small} = s_{\rm big}$

Scale-invariance

 $s_{\rm small} = s_{\rm big}$

 $s = H(x_1, \ldots, x_n)$

 $s = H(x_1, \ldots, x_n)$

s = 1

s = 0

s = 0

 $s = H(x_1, \ldots, x_n)$ s = 1s = 0s = 0

Generalised information entropy n 2.44 H = X_i

$$-3.92 \sum_{i=1}^{n} x_i^{2.44} \ln x_i^{2.44}$$

 $s = H(x_1, \ldots, x_n)$ "Tree Entropy"

Generalised information entropy n

$$H = -3.92 \sum_{i=1}^{N} x_i^{2.44} \ln x_i$$

Evolving tree entropy

Illustration of contrived mergers

Gradual loss of long-term memory

The initial tree entropy and number of leaves become irrelevant for well-resolved trees.

Part II Tree Entropy in ACDM

SURFS CDM simulation of 210 Mpc/h (N=1536³) by P. Elahi et al. (2018)

Tree entropy in ΛCDM

Tree entropy in ΛCDM

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Tree entropy dependence on redshift and mass

Tree entropy dependence on redshift and mass

Information on galaxy morphology (in Shark)

Information on galaxy morphology (in Shark)

Application to the Milky Way

Part III

Merger tree of the MW

Kruijssen et al. (2020)

Entropy evolution of the MW

Danail Obreschkow

International Centre for Radio Astronomy Research

• which carries additional information to standard halo parameters.

Danail Obreschkow

The tree entropy is a meaningful scale-free measure of merger tree topology,

nternational Centre fo Radio Astronomy **⊰esearch**

- The tree entropy is a meaningful scale-free measure of merger tree topology, • which carries additional information to standard halo parameters.
- Cosmological simulations reveal that global galactic properties depend significantly on the tree entropy of the mass assembly history.

Danail Obreschkow

Centre

- The tree entropy is a meaningful scale-free measure of merger tree topology, which carries additional information to standard halo parameters.
- Cosmological simulations reveal that global galactic properties depend significantly on the tree entropy of the mass assembly history.
- Using the tree entropy, it appears that the empirical merger history of the Milky Way is consistent with its global morphology in the context of ΛCDM.

Danail Obreschkow

Int Ce Ra As Re

ernational ntre for dio tronomy search

Danail Obreschkow

Ken Freeman @ 80 Conference 22 September 2022

Appendix

International Centre for Radio Astronomy Research

Numerical convergence

Mass resolution

Tree representations

Matter density

Evolving tree entropy

Merger event: $s_{\text{new}} = H + (1 + 0.4H - 0.9H^2) \sum_{i=1}^{n} x_i^2 (s_i - H)$ i=1

Merger event:

$$s_{\text{new}} = H + (1 + 0.4H - 0.9H^2) \sum_{i=1}^{n} x_i^2 (s_i - H^2)$$

For smooth accretion it follows that:

$$s_{\rm new} = s \left(\frac{m}{m + \Delta m_{\rm smooth}} \right)^{1/3}$$

Smooth growth limit

Nearly smooth accretion

Resampling

