Galaxy physical parameters from spectral modelling: recent successes and future challenges

ASTRO-3D Senior Fellow International Centre for Radio Astronomy Research University of Western Australia, Perth, Australia

Elisabete da Cunha

Outline

- 1) Motivation and 'historical' perspective
- 2) Overview of SED modelling ingredients
- 3) A brief summary of current models/codes
- 4) Some successes
- 5) Some challenges

Motivation

In the last ~20 years we have had an explosion of large `statistical' surveys of galaxies, sampling their emission from the ultraviolet to the infrared/radio, with surveys spanning most of the history of the Universe, and pushing towards increasingly higher redshifts.

e.g., local galaxy surveys: SDSS [+GALEX, WISE, etc] (Kauffmann+2003, Brinchmann+2004, Chang+2015, Salim+2016)

e.g., multi-wavelength local galaxy surveys [GALEX to Spitzer/Herschel] SINGS (Kennicutt+2003), KINGFISH (Kennicutt+2011), GAMA (e.g., Driver+2011)

e.g., deep `cosmological surveys' COSMOS (e.g., Capak+2007, Laigle+2016, Weaver+2022) 3D-HST/CANDELS (Koekomoer+2011, Brammer+2012) now: JWST (and ALMA!)

Madau & Dickinson (2014)

The multi-wavelength view of galaxies

We now have access to the multi-wavelength spectral energy distributions of galaxies across cosmic time, from the UV to the (sub-)millimetre/radio.

A challenge: obtaining matched photometry across all wavelengths

Far-Infrared

credit: ICRAR/GAMA and ESO

Spectral energy distribution model

Physical parameters: star formation rate (history?) stellar mass stellar & gas-phase metallicity dust attenuation dust mass, dust temperature AGN properties

Galaxy formation and evolution model / theory predictions

(yl -4 (Fν log -6

The need for SED models

(simplified) spectral energy distribution of a star-forming galaxy

Ingredients

3) AGN

- 1) Stellar emission
- 2) Interstellar medium

4) 'Cosmological effects'

Stellar emission

- 1) Isochrones (i.e. stellar evolution)
- 2) Initial mass function
- 3) Spectral libraries
- 4) Star formation histories
 - parametric/non-parametric
 - continuous/bursty
- 5) Metallicity evolution

/ Msun/yr) 2.0 1.5 1.0 log (SFR 0.5 00

Bruzual & Charlot (2003)

spectrum of a SSP at a given age IMF-weighted sum of the spectra of stars along the isochrone (location in the HR diagram) at that age

Points: 1048 (down to H=23) 3D-HST galaxies in GOODS-South

(Pacifici+2015)

'tau-models'

realistic SAM SFHs

Points: 1048 (down to H=23) 3D-HST galaxies in GOODS-South

We need complex (realistic) SFHs to reproduce the observed HST colours of galaxies!

(Pacifici+2015)

(Pacifici+2015)

Interstellar medium

- 1) Dust attenuation
- 2) Dust emission
- 3) Nebular emission

(lines+continuum)

4) Radio emission

- Stellar birth clouds with lifetime t₀.

$$\hat{\tau}_{\lambda}(t') = \begin{cases} \hat{\tau}_{\lambda}^{\text{BC}} + \hat{\tau}_{\lambda}^{\text{IS}} \\ \hat{\tau}_{\lambda}^{\text{ISM}} \end{cases}$$
$$\hat{\tau}_{\lambda}^{\text{BC}} = (1 - \mu)\hat{\tau}_{V}(\lambda/\lambda)$$

 $\hat{\tau}_{\lambda}^{\text{ISM}} = \mu \hat{\tau}_{V} (\lambda / 5500 \text{ Å})^{-0.7}$

• Attenuation affecting stars older than t₀ in the diffuse ISM is only a fraction of that affecting young stars in the birth clouds.

[SM for $t' \leq t_0$ for $t' > t_0$

 $(5500 \text{ Å})^{-1.3}$

Charlot & Fall (2000) **HIIH ISM birth clouds: * HII + HI (young stars) * II (HII 🇱 diffuse interstellar

For an excellent review on dust attenuation see Salim & Narayanan (2020)

Interstellar medium

- 1) Dust attenuation
- 2) Dust emission
- 3) Nebular emission

(lines+continuum)

4) Radio emission

- Stellar birth clouds with lifetime t₀.

$$\hat{\tau}_{\lambda}(t') = \begin{cases} \hat{\tau}_{\lambda}^{\text{BC}} + \hat{\tau}_{\lambda}^{\text{IS}} \\ \hat{\tau}_{\lambda}^{\text{ISM}} \end{cases}$$
$$\hat{\tau}_{\lambda}^{\text{BC}} = (1 - \mu)\hat{\tau}_{V}(\lambda / \mu)$$

$$\hat{\tau}_{\lambda}^{\text{ISM}} = \mu \hat{\tau}_{V} (\lambda / 5500$$

• Attenuation affecting stars older than t₀ in the diffuse ISM is

 $Å)^{-0.7}$

e.g. MAGPHYS (da Cunha+2008)

- 1) X-ray/UV/optical continuum
- 2) Emission lines (NLR and BLR)
- 3) Torus emission (dust)
- 4) Radio emission

(Calistro Rivera et al 2016)

0

0

'Cosmological effects'

1) IGM absorption (UV) 2) Effect of the CMB on cold dust emission

2.1) Extra heating by the CMB

2.2) CMB is a **strong background** at high z

Bayesian fitting methods

How it started...

Increasingly complex outputs: lots of information about parameter degeneracies and uncertainties

...How it's going

Leja+2017

SED codes*,**

*biased/incomplete list
**all codes have things in common; each has some unique aspects and its own strengths

- MAGPHYS (da Cunha+2008, 2015, Battisti+2019)
- CIGALE (Noll+2009, Boquien+2019)
- GalMC (Acquaviva+2011, 2015)
- BAYESED (Han & Han 2012, 2014)
- BEAGLE (Chevallard & Charlot 2016)
- AGNfitter (Calistro Rivera+2016)
- lyer & Gawiser (2017)
- Prospector (Leja+2017)
- BAGPIPES (Carnall+2018)
- Prospect (Robotham+2020)
- PiXedfit (Abdurro'uf+2021)

Some things all codes have **1n common**

Quality of results depends on the quality of input data:

- how well sampled is the SED?
- spectral and photometric calibration
- matching of multi-wavelength data of widely different spatial resolutions,
- different apertures, etc.

Uncertainties in all the different model ingredients

- stellar evolution/spectra
- dust models/dust evolution
- AGN torus models

'Bayesian methods' are great to quantify uncertainties, impact of

- degeneracies, and even model selection, but: we need to beware of results
- that are not informed by the data, but rather a consequence of the priors.

How do we test/falsify these models?

Some recent successes (where SED models pass tests)

But how well have these codes/models been tested/falsified?

- The success of these codes is obvious: they have allowed us to constrain the physical properties (star
- formation rates, stellar masses, dust properties, etc etc), of large sample of galaxies in the nearby Universe
- and out to high redshifts. They have shown us how the cosmic SFRD and stellar mass evolve, the main
- sequence of star-forming galaxies, shown us how dust content evolves with galaxy properties and time, etc.

Ability to fit photometry+spectra simultaneously, use information on the stellar absorption features to obtain more reliable SFHs (or, at least, average stellar ages), thus breaking degeneracies and reducing uncertainties in purely photometric fits.

Spectrophotometric fits & the ability to constrain SFHs

Full model (Section 4.4) 5600

E.g. Carnall+2019 studied the SFHs of massive quiescent galaxies at z~1 from VANDELS. They find a steep trend between formation time and stellar mass, indicating downsizing. Need to sensitivity to stellar ages to do this (i.e.

spectroscopy).

Note: other SED codes also have this capability e.g., Chevallard & Charlot (2016), Abdurro'uf+(2021)

Testing the models I: predicting observables

example 1: For optically-selected galaxies, MAGPHYS predicts the correct IR dust luminosity and the 1-mm flux from only UV-to-NIR SED fits (da Cunha+2013a).

Testing the models I: predicting observables

example 1: For optically-selected galaxies, MAGPHYS predicts the correct IR dust luminosity and the 1-mm flux from only UV-to-NIR SED fits (da Cunha+2013a).

e.0 6.0

Testing the models I: predicting observables

example 2: For local galaxies, Prospector predicts the right Hα and Hβ luminosities from broad-band photometry fits (Leja+2017).

Testing the models II: Comparison with simulated galaxies

An independent test of MAGPHYS using a model galaxy from a hydrodynamic+radiative transfer simulation

green: "true value"

colours/shade: MAGPHYS, different viewing angles

MAGPHYS recovers the physical parameters well for different viewing angles with smooth time step variation.

Hayward & Smith 2015

galaxies)

Testing SED models using spectroscopic redshifts

Testing SED models using spectroscopic redshifts

Dudzevičiūtė+2020 confirmed the accuracy of MAGPHYS-photoz using ~6,700 K-band selected UDS galaxies and 44 sub-millimetre galaxies with known spectroscopic redshifts.

 $(z_{spec}-z_{phot})/(1+z_{spec})=-0.005+/-0.003$ with a dispersion of 0.13.

1) SED physics at high-redshift, e.g.,

- Low metallicity stellar populations [ionizing flux, especially Hell excess]: importance of stellar binarity (e.g., Eldridge & Stanway 2012), rotation (e.g., Levesque+2012), low-mass X-ray binaries (e.g., Schaerer+2019)
- Possible evolution of dust content and dust attenuation curves
- IMF???

1) SED physics at high-redshift, e.g.,

- Low metallicity stellar populations [ionizing flux, especially Hell excess]: importance of stellar binarity (e.g., Eldridge & Stanway 2012), rotation (e.g., Levesque+2012), low-mass X-ray binaries (e.g., Schaerer+2019)
- Possible evolution of dust content and dust attenuation curves
- IMF???

GALAXEV (Bruzual & Charlot 2003): single, non-rotating Starburst 99 (Leitherer+2014): single, rotating BPASS (Eldridge & Stanway 2012): interacting binaries

Hell ionizing photons as a function of time for different stellar models

(adapted from Wofford+2016; see also Stanway+2016)

1) SED physics at high-redshift, e.g.,

- Low metallicity stellar populations [ionizing flux, especially Hell excess]: importance of stellar binarity (e.g., Eldridge & Stanway 2012), rotation (e.g., Levesque+2012), low-mass X-ray binaries (e.g., Schaerer+2019)
- Possible evolution of dust content and dust attenuation curves
- IMF???

GALAXEV (Bruzual & Charlot 2003): single, non-rotating Starburst 99 (Leitherer+2014): single, rotating BPASS (Eldridge & Stanway 2012): interacting binaries

IR excess, $\log_{10} (L_{\text{IR}}/L_{\text{UV}})$ -0.5

Hell ionizing photons as a function of time for different stellar models

(adapted from Wofford+2016; see also Stanway+2016)

ALMA: Evolution in the dust attenuation curve at high-redshift?

1) SED physics at high-redshift, e.g.,

- Low metallicity stellar populations [ionizing flux, especially Hell excess]: importance of stellar binarity (e.g., Eldridge & Stanway 2012), rotation (e.g., Levesque+2012), low-mass X-ray binaries (e.g., Schaerer+2019)
- Possible evolution of dust content and dust attenuation curves
- IMF???

2) Spatial offsets between stellar and dust emission: at what point does the energy balance assumption break down?

HST (stellar emission) and ALMA (dust emission) in z~2 starbursts (SMGs)

- ALESS-045.1 -	- ALESS-067.1 -	- ALESS-073.1	- ALESS-112.1
- F160/ALMA -	- F814/F160/ALMA -	- F814/F160/ALMA	- F160/ALMA
- ALESS-003.1	- ALESS-010.1	- ALESS-015.1	- ALESS-029.1

Hodge+2016; see also Inami+2022

How do we deal with this?

1) SED physics at high-redshift, e.g.,

- Low metallicity stellar populations [ionizing flux, especially Hell excess]: importance of stellar binarity (e.g., Eldridge & Stanway 2012), rotation (e.g., Levesque+2012), low-mass X-ray binaries (e.g., Schaerer+2019)
- Possible evolution of dust content and dust attenuation curves
- IMF???

2) Spatial offsets between stellar and dust emission: at what point does the energy balance assumption break down?

3) In the IFU era, what is the best way to combine spatially-resolved spectral and photometric information?

NGC 309

JWST - are there really massive galaxies at z~10?

Many more massive galaxies at high-z than previously thought!

Did the formation of massive galaxies start earlier than we thought?

But: all this relies on heavily on SED modelling!

Conclusion

 Amazing developments in SED modelling in the last decade or so: many new codes suited for many purposes

 Code sophistication is increasing, with the goal of extracting as much information as possible from observations

 But: we must continue testing the assumptions and physical ingredients that go into the models, especially when starting to explore new regions of the parameter space and observations

• For discussion: what is missing in the models? How can we test them/falsify them better?

