Source Extraction and Characterisation II Spectral Line Emission

Tobias Westmeier (ICRAR/UWA)

International Centre for Radio Astronomy Research

Government of Western Australia Department of the Premier and Cabinet Office of Science

Outline of Lecture

5 October 2018

- ★ Source finding
 - ► 3D source finding
 - ► Software
 - ► Metrics
 - ► Algorithms

- ★ Source parameterisation
 - Basic parameters
 - Moment analysis
 - ► Spectral fitting
 - ► Frequency redshift velocity
 - Uncertainties

Source Finding

5 October 2018

Source Finding – 3D Approach

★ Assumptions

- ► 3D image data cubes
 - 2 spatial dimensions: $(\alpha, \delta), (l, b)$
 - 1 spectral dimension: f, v, z
- ► Gaussian noise + source emission
- ★ Advantages
 - ► Redshift / distance information
 - Less source confusion
- ★ Disadvantages
 - ► Larger data volume
 - ► 3D approach required

S (mJy)

Source Finding – Software

★ Software

- Duchamp / Sélavy
 - 3D source finder implemented in the ASKAPsoft pipeline
 - Developed by Matthew Whiting
 - Duchamp: https://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/
 - Sélavy: https://www.atnf.csiro.au/computing/software/askapsoft/sdp/docs/current/analysis/
- ► SoFiA (*Source Finding Application*)
 - Stand-alone 3D source finding pipeline
 - Originally developed for extragalactic HI surveys
 - Graphical user interface
 - GitHub: https://github.com/SoFiA-Admin/SoFiA/
 - SoFiA wiki: https://github.com/SoFiA-Admin/SoFiA/wiki

5 October 2018

Spectral Source Extraction and Characterisation

★ Source finding

- Detection of signal in data containing statistical noise
- ▶ WALLABY: 500,000 galaxies, 1 PB of data \rightarrow
- ★ Metrics
 - Completeness
 - Fraction of sources detected \rightarrow *C* = True /All
 - ► Reliability
 - Fraction of genuine detections $\rightarrow R = \text{True}/(\text{False}+\text{True})$
 - ► Function of signal-to-noise ratio
 - ► Compromise between
 - Low threshold \rightarrow high completeness, but false detections
 - High threshold \rightarrow high reliability, but missing sources

automation required

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 $\rightarrow \sigma = 0.20$, SNR = 5.00

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 $\rightarrow \sigma = 0.20$, SNR = 5.00
 - Size 35 $\rightarrow \sigma = 0.17$, SNR = 4.23

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 $\rightarrow \sigma = 0.20$, SNR = 5.00
 - Size 35 $\rightarrow \sigma = 0.17$, SNR = 4.23
 - ► Conclusions
 - Smooth data to optimal resolution to maximise SNR of sources
 - Recovery of integrated SNR (± noise) for kernels that match shape and size of source

- ★ Smooth + clip algorithm
 - Convolution with multiple 3D kernels for spatial and spectral smoothing on different scales
 - Measure RMS on each scale and apply threshold of $N \times RMS$
 - Add pixels above threshold to source mask

14

5 October 2018

Source Finding – Wavelet Decomposition

★ Alternative algorithms

► Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^{J} w_j(x)$$

NGC 2997

NGC 2997 - wavelet transform

Starck, Murtagh & Bertero (2011)

Source Finding – Wavelet Decomposition

- ★ Alternative algorithms
 - Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^J w_j(x)$$

► 2D-1D wavelet decomposition

$$D(x) = c_{J_1, J_2}(x)$$

+ $\sum_{j_1} w_{j_1, J_2}(x) + \sum_{j_2} w_{J_1, j_2}(x)$
+ $\sum_{j_1, j_2} w_{j_1, j_2}(x)$

► See Flöer & Winkel (2012) for details

Source Finding – Wavelet Decomposition

- ★ Alternative algorithms
 - Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^{J} w_j(x)$$

► 2D-1D wavelet decomposition

$$D(x) = c_{J_1, J_2}(x)$$

+ $\sum_{j_1} w_{j_1, J_2}(x) + \sum_{j_2} w_{J_1, j_2}(x)$
+ $\sum_{j_1, j_2} w_{j_1, j_2}(x)$

► See Flöer & Winkel (2012) for details

★ Alternative algorithms

- Sources may be spatially unresolved
 - Source finding problem reduces from 3D to 1D
- Characterised Noise HI source finder (CNHI)
 - Kuiper test in a running window along the spectral axis
 - \rightarrow uncover regions statistically inconsistent with pure Gaussian noise
- ► See Jurek (2012) for more details

★ Estimating reliability

- Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. HI emission)
 - No artefacts

(e.g. RFI, sidelobes, continuum residuals)

★ Estimating reliability

- Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. HI emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

★ Method

- Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow$ Noise or source

★ Estimating reliability

- Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. HI emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

★ Method

- Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow$ Noise or source
- Compare density in parameter space

★ Estimating reliability

- Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H1 emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

★ Method

- Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow$ Noise or source
- Compare density in parameter space

• Reliability
$$R \equiv \frac{T}{T+F} \rightarrow \frac{P-N}{P}$$

5 October 2018

★ Estimating reliability

- Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H1 emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

★ Method

- Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow$ Noise or source
- Compare density in parameter space

• Reliability
$$R \equiv \frac{T}{T+F} \rightarrow \frac{P-N}{P}$$

5 October 2018

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

• Retain sources above a meaningful threshold, e.g. R > 0.9

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

• Retain sources above a meaningful threshold, e.g. R > 0.9

- ► Highly reliable source catalogue
 - Dozens of false detections removed as unreliable
 - Enables use of low source finding threshold of $\approx 3\,\sigma$

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

• Retain sources above a meaningful threshold, e.g. R > 0.9

- ► Highly reliable source catalogue
 - Dozens of false detections removed as unreliable
 - Enables use of low source finding threshold of $\approx 3\,\sigma$

Requires clean data with Gaussian noise plus source emission and no artefacts!

Parameterisation

5 October 2018

Parameterisation

★ Source parameterisation

- Process of measuring the basic observational parameters of a source
 - Position \rightarrow sky position, frequency/radial velocity
 - Size \rightarrow angular size, spectral line width
 - Flux → peak flux density/brightness temperature, integrated flux
 - Other \rightarrow orientation, morphology, asymmetry, etc.
- Conversion to physical parameters
 - Position \rightarrow redshift, distance
 - Size \rightarrow diameter, rotation velocity, temperature
 - Flux \rightarrow luminosity, column density, mass
- ► Effect of noise
 - Statistical uncertainty
 - Parameterisation often dominated by systematic errors

Parameterisation – Source Position

★ Basic source parameters

- Position

- 3D $\rightarrow \langle \vec{p} \rangle = (\langle x \rangle, \langle y \rangle, \langle z \rangle)$
- Setting $S(\vec{p}_i) = \text{const.}$ will yield geometric centroid
- Important
 - Accurate source mask desirable
 - Negative signals must be excluded
 - Centroid in native pixel coordinates
 - \rightarrow Conversion to sky coordinates required
 - \rightarrow World Coordinate System (WCS)
 - FITS: https://fits.gsfc.nasa.gov/fits wcs.html
 - wcslib: http://www.atnf.csiro.au/people/mcalabre/WCS/
 - Astropy: http://docs.astropy.org/en/stable/wcs/

★ Basic source parameters

Integrated flux

$$S_{\text{int}} = \frac{\Delta z}{\Omega_{\text{PSF}}} \sum_{i} S(\vec{p}_i)$$

• Division by beam solid angle required to correct for pixel-to-pixel correlation

 $\Omega_{\text{PSF}} = \frac{\pi \,\theta_a \,\theta_b}{4 \ln(2)} \approx 1.133 \,\theta_a \,\theta_b \quad \text{for a Gaussian PSF where } \theta_a, \theta_b = \text{FWHM of major, minor axis of beam}$

• Units: $Jy Hz = 10^{-26} W m^{-2}$ \rightarrow correct Jy km s⁻¹ \rightarrow frequently used pseudo-flux unit; better not use

► HI mass

$$\frac{M_{\rm HI}}{M_{\odot}} = 0.236 \times \frac{S_{\rm int}}{\rm Jy\,km\,s^{-1}} \times \left(\frac{d}{\rm kpc}\right)^2$$

• Only valid for optically thin gas at redshift 0

Parameterisation – Spectral Moments

- ★ Spectral moments
 - ▶ 0^{th} moment \rightarrow Sum of flux densities

 $M_0(x, y) = \Delta v \sum_{z} S(x, y, z)$

▶ 1^{st} moment \rightarrow Flux-weighted centroid

$$M_1(x, y) = \frac{\sum_z v(z) S(x, y, z)}{\sum_z S(x, y, z)}$$

▶ 2^{nd} moment → Standard deviation about 1^{st} moment

$$M_2(x, y) = \sqrt{\frac{\sum_z [v(z) - M_1(x, y)]^2 S(x, y, z)}{\sum_z S(x, y, z)}}$$

- ► Higher-order moments rarely used
 - 3rd moment (*skewness*), 4th moment (*kurtosis*)

A mask or flux threshold is usually required when calculating moments, as the noise will otherwise dominate the result!

Parameterisation - Spectral Moments

- ★ Spectral moments
 - ► Units
 - 0th moment
 - \rightarrow Jy Hz or Jy km s⁻¹
 - \rightarrow K Hz or K km s⁻¹
 - 1st and 2nd moments
 - \rightarrow Hz or km s⁻¹
 - ► 0th moment often converted to HI column density
 - $N_{\rm H\,I} = 1.823 \times 10^{18} \int T_{\rm B} \, \mathrm{d}\nu$ where $[N_{\rm H\,I}] = {\rm cm}^{-2}$, $[T_{\rm B}] = {\rm K}$, $[\nu] = {\rm km\,s}^{-1}$
 - Assumptions
 - Local source at z = 0
 - Emission is optically thin
 - Emission is diffuse and fills the telescope beam

Moment analysis is sensitive to noise!

Parameterisation – Spectral Fitting

★ Fitting of spectrum I – Gaussian Function 0.03 ► Useful for fitting and parameterising simple line profiles ly / beam 0.02 Definition 0.01 0.00 $G(z) = A \exp\left(-\frac{(z-z_0)^2}{2\sigma^2}\right)$ 10 Channel Number 1.5 • Relation between w_{50} (FWHM) and σ Multi-component fit brightness temperature (K) $w_{50} = 2\sqrt{2\ln(2)} \sigma$ $\approx 2.3548 \, \sigma$ narrow \rightarrow cold gas 1.0 ► Integrated flux 0.5 broad \rightarrow warm gas $S_{\rm int} = \int G(z) \, \mathrm{d}z = \sqrt{2\pi} \, A \, \sigma \, \bigg| \approx 2.5066 \, A \, \sigma$ 0.0 -200-300-250radial velocity (km/s)

Spectral Source Extraction and Characterisation

-150

30

20

van der Marel & Marijn 1993, ApJ, 407, 525

★ Fitting of spectrum II – *Gauss–Hermite Polynomial*

Useful for extracting velocity fields from spatially resolved galaxies for rotation curve analysis

Implemented in GIPSY

•
$$\phi(x) = a e^{-\frac{1}{2}y^2} \left\{ 1 + \frac{h_3}{\sqrt{6}} (2\sqrt{2}y^3 - 3\sqrt{2}y) + \frac{h_4}{\sqrt{24}} (4y^4 - 12y^2 + 3) \right\} + Z$$
 where $y \equiv \frac{x-b}{c}$

5 October 2018

★ Fitting of spectrum III – *Busy Function*

Westmeier et al. 2014, MNRAS, 438, 1176

- Designed to fit double-horn profile of spatially unresolved galaxies
- Product of two error functions and a polynomial

$$B(z) = \frac{a}{4} \times [\operatorname{erf}(b_1(w + z - z_e)) + 1] \times [\operatorname{erf}(b_2(w - z + z_e)) + 1] \times [c |z - z_p|^n + 1]$$

Software: BusyFit https://github.com/SoFiA-Admin/BusyFit
BF_dist https://github.com/RussellJurek/busy-function-fitting

- ★ Frequency Redshift Velocity
 - Radio astronomical data cubes usually provided in frequency, f, with constant channel width, Δf
 - Relative motion between source and observer
 - Doppler shift between observed frequency, f, and rest frequency, f_0
 - 21-cm HI transition: $f_0 \approx 1.420405751786 \text{ GHz}$
 - ► Reference frames
 - Correction for motion of observer
 - Rotation and orbital motion of the earth
 - Peculiar motion of sun
 - Rotation of Milky Way
 - Motion of Milky Way in Local Group
 - etc.

★ Velocity rest frames

★ Velocity rest frames

Name	Reference	Description
Topocentric	Observer	Natural rest frame of any observation
Barycentric	Solar System barycentre	Often referred to as "heliocentric"; rest frame most commonly supplied with HI data cubes
Local Standard of Rest (LSR)	Solar neighbour-	Conversion between barycentric and LSRD: $v_{\text{LSR}} = v_{\text{bar}} + 9\cos(l)\cos(b) + 12\sin(l)\cos(b) + 7\sin(b)$
Galactic Standard of Rest (GSR)	Galactic centre	Conversion between LSRD and GSR: $v_{\text{GSR}} = v_{\text{LSR}} + 220 \sin(l) \cos(b)$
LG Standard of Rest (LGSR)	Local Group barycentre	Conversion between GSR and LGSR: $v_{\text{LGSR}} = v_{\text{GSR}} - 88 \cos(l) \cos(b) + 64 \sin(l) \cos(b) - 43 \sin(b)$

These are the rest frames most commonly encountered in radio astronomy. Anything beyond the barycentric rest frame is inaccurate, in particular the LGSR.

- ★ Redshift and velocity
 - ► Definition of redshift:

$$z \equiv \frac{\lambda_{\rm obs} - \lambda_0}{\lambda_0} = \frac{f_0 - f_{\rm obs}}{f_{\rm obs}} \implies \qquad \frac{f_0}{f_{\rm obs}} = 1 + z$$

- Redshift components
 - Cosmological redshift \rightarrow Hubble expansion of the universe

 - Peculiar redshift \rightarrow Doppler shift from peculiar velocities
 - Gravitational redshift \rightarrow GR time dilation in gravitational potential (usually negligible)
- Redshifts are multiplicative
 - $1 + z_{obs} = (1 + z_{cos}) \times (1 + z_{pec}) \times (1 + z_{grav})$
- It is usually not possible to separate redshift components
 - Low redshift \rightarrow Dominated by peculiar velocities
 - High redshift \rightarrow Dominated by Hubble expansion

★ Peculiar redshift/velocity

- Non-relativistic Doppler effect:
 - Valid for small $v_{pec} \ll c$

• Note that generally
$$c_{z_{obs}} \neq v \rightarrow$$
 "recession velocity" or "optical velocity"

- Depends on transverse velocity!
- ϑ = angle between direction of motion and line-of-sight from observer to source at time of emission
- Pure line-of-sight motion:

$$1 + z_{\text{pec}} = \sqrt{\frac{1+\beta}{1-\beta}} \qquad \Leftrightarrow \quad \frac{v_{\text{pec}}}{c} = \frac{f_0^2 - f^2}{f_0^2 + f^2}$$

where $\gamma \equiv (1 - \beta^2)^{-1/2}$ (Lorentz factor)

 $z_{\rm pec} = v_{\rm pec} \,/\, c \equiv \beta$

 $1 + z_{\text{pec}} = \gamma \left[1 + \beta \cos(\vartheta) \right]$

- ★ Redshift corrections I Velocity width
 - ► Assumptions
 - Two objects at same cosmological redshift, *z*cos
 - Redshift difference, Δz_{obs} , due to velocity difference
 - Non-relativistic Doppler effect:

$$z_{\rm pec} = \beta = \frac{v_{\rm pec}}{c}$$

Peculiar velocity difference along LOS

- ★ Redshift corrections II Flux-related parameters
 - Definition of flux

$$F = \int S \,\mathrm{d}f_{\mathrm{obs}} = \frac{L}{4\pi D_{\mathrm{L}}^2}$$

► Rayleigh–Jeans law

$$B = \frac{2 k_{\rm B} f^2 T}{c^2} \quad \text{where} \quad I = \frac{S}{\Omega} = \frac{B}{(1+z)^3} \quad \text{with telescope beam solid angle } \Omega$$

Brightness temperature

Euclidian (z = 0):
$$T_{\rm B} = \frac{c^2 S}{2 k_{\rm B} f_0^2 \Omega}$$
 Relativistic

- ★ Further information
 - ► Meyer et al. 2017, PASA, 34, 52

$$: T_{\rm B} = \frac{c^2 (1+z)^3 S}{2 k_{\rm B} f_0^2 \Omega}$$
$$\frac{T_{\rm B}}{K} \approx 6.06 \times 10^5 (1+z)^3 \frac{S}{\rm Jy} \left(\frac{a \times b}{\rm arcsec^2}\right)^2$$

★ Redshift corrections II – Flux-related parameters

► HI column density

$$N_{\rm H\,I} = \frac{16\pi \,(1+z)^4 S}{3\,{\rm h}\,f_0 A_{\rm H\,I}\Omega}$$

where $A_{\rm H\,I} = 2.86888 \times 10^{-15} \, {\rm s}^{-1}$ is the spontaneous emission rate of H I

• Evaluating the constants yields

$$\frac{N_{\rm HI}}{\rm cm^{-2}} = 2.64 \times 10^{20} (1+z)^4 \frac{\rm S}{\rm Jy \, Hz} \left(\frac{\Omega}{\rm arcsec^2}\right)^{-1}$$
$$= 2.33 \times 10^{20} (1+z)^4 \frac{\rm S}{\rm Jy \, Hz} \left(\frac{a \times b}{\rm arcsec^2}\right)^{-1} \text{ for a Gaussian beam}$$

★ Further information

► Meyer et al. 2017, PASA, 34, 52

★ Redshift corrections II – Flux-related parameters

► HI mass

$$M_{\rm H\,I} = \frac{16\pi \, m_{\rm H} \, D_{\rm L}^2 \, S}{3 \, {\rm h} \, f_0 \, A_{\rm H\,I}}$$

- ► where
 - $A_{\rm H\,I} = 2.86888 \times 10^{-15} \, {\rm s}^{-1}$ is the spontaneous emission rate of H I
 - $m_{\rm H} = 1.673533 \times 10^{-27}$ kg is the mass of a hydrogen atom
 - $D_L(z)$ is the redshift- and cosmology-dependent luminosity distance
- HI mass depends on assumptions about cosmology
- ★ Further information
 - ► Meyer et al. 2017, PASA, 34, 52

★ Uncertainties

- Measurement errors usually dominated by systematic errors
 - flux calibration
 - continuum subtraction
 - spectral bandpass calibration
 - image deconvolution
 - radio frequency interference
 - missing diffuse flux (due to lack of short spacings)
 - parameterisation errors due to insufficient source mask
 - source confusion (multiple sources perceived as one)
 - systematic errors in source distance measurements

• ...

★ Example

- Source with S = 1 Jy over N = 50 channels
- Noise level of $\sigma = 0.1$ Jy
- ► Flux calibration error of 5%
- ► Bandpass error of 0.1 Jy
- ★ True flux and statistical uncertainty
 - $F_{\text{true}} = 50 \text{ Jy}, \ \sigma_{\text{stat}} = \sigma \times \sqrt{N} \approx 0.7 \text{ Jy}$
- ★ Measured flux
 - $F_{\text{meas}} = 57.5 \pm 0.7 \text{ Jy} (15.5\% \text{ too high})$
- ★ Discrepancy
 - $(F_{\text{meas}} F_{\text{true}}) / \sigma_{\text{stat}} \approx 10.6$

Parameterisation – Uncertainties

- ★ How to get realistic error estimates?
 - Numerical methods
 - Common techniques
 - Injection of artificial sources into data
 - Shifting of source mask to "empty" regions of data cube

★ Additional problem

- ► Errors may not be Gaussian
- Mean & standard deviation $(\mu \pm \sigma)$ no longer meaningful
 - Numerical error analysis required
- ► Example
 - Busy Function
 - a is Gaussian, but not b_1

Summary

5 October 2018

★ Key points to take away

- Source finding is non-trivial and needs fine-tuning
- Optimal convolution filters required to detect sources
- Compromise between high completeness and high reliability
 - Reliability calculation can help, but clean data required
- Accurate source masks required for parameterisation
 - Beware of biases
- Difference between observed frequency/redshift and source-frame velocity
- Velocity resolution changes with redshift
 - Corrections required beyond redshift 0
- ► Distance-dependent parameters (e.g. HI mass) are cosmology-dependent
- Parameterisation errors usually dominated by systematic errors
 - Numerical error analysis required

