
High Performance Computing
ICRAR/CASS Radio School

Oct 2, 2018

Overview

• Intro to Pawsey Supercomputing Centre
• Architecture of a supercomputer
• Basics of parallel computing
• Filesystems
• Software environment (modules)
• Job submission
• Project accounting

Pawsey Supercomputing Centre

National Reach

Magnus Supercomputer35,712 cores, 1.09 PFLOPS,
Aries dragonfly interconnect

Galaxy Supercomputer9,440 CPU cores
64 K20X GPUs
Aries dragonfly interconnect

Zeus Supercomputer
20 visualization nodes
44 Pascal GPUs for GPU computing
80 Xeon Phi nodes for manycore jobs
1 TB large memory nodes
2,240 CPU cores for serial codes
FDR/EDR Infiniband interconnect

Supercomputer Access
Access to Magnus via competitive merit calls:

• NCMAS
• Energy and Resources
• Pawsey Partners

Application call for 2019 closes on 19th of October

Astronomy
25%

NCMAS
25%

Partner Share
30%

Energy &
Resources

15%

Directors
5%

Astronomy share on Galaxy supports operation
of ASKAP and MWA telescopes

Director share to help projects get started and
prepare for merit

Nimbus Research Cloud3000 Cores, OpenStack,
Sahara, Volta GPUs

Data Storage65 PB Migrating Disk and Tape

190
projects

resources
Protecting Perth’s
aquifers

agriculture
AI for targeted weed
control energy

Understanding the
ocean to improve
offshore designs

astronomy
A panoramic view of the universe in
colour

health
Combating Alzheimer’s
and dementia

Accelerating Scientific Outcomes

Emerging topics in HPC

Machine Learning

Containers

Data management

Find out more
Pawsey Website (www.pawsey.org.au)
Pawsey Friends mailing list

Pawsey Twitter feed (@PawseyCentre)

User Support Portal (support.pawsey.org.au)

Basics of Parallel Computing

Parallelism in Workflows
Exploiting parallelism in a workflow allows us to
• get results faster, and
• break up big problems into manageable sizes.

A modern supercomputer is not a fast processor. It is many
processors working together in parallel.

Baking a Cake

Measure ingredients Mix ingredients

Bake and cool cake

Mix icing
Ice cake

Stage ingredients Preheat oven

Serial

Parallel

Levels of Parallelism
Coarse-grained parallelism (high level)
• Different people baking cakes in their own kitchens.
• Preheating oven while mixing ingredients.
Greater autonomy, can scale to large problems and many helpers.

Fine-grained parallelism (low level)
• Spooning mixture into cupcake tray.
• Measuring ingredients.
Higher coordination requirement. Difficult to get many people to
help on a single cupcake tray.

How many helpers?
What is your goal? – high throughput, to do one job fast, or solve a
grand-challenge problem?

High Throughput:
• For many cakes, get many people to bake independently in their own

kitchens – minimal coordination.
• Turn it into a production line. Use specialists and teams in some

parts.

Doing one job fast:
• Experience as well as trial and error will find the optimal number of

helpers.

Supercomputing Architecture

What is a Supercomputer?

Many computers (nodes) closely connected
and working together

Significantly enhances the capability of
computational research
• reduces runtimes from months to days
• enables large scale simulations
• allows processing of huge datasets

Data Movers

High Performance Storage

Login Nodes

Compute Nodes

Scheduler

Abstract Supercomputer

• Remote access to the supercomputer
• Where users should manage workflows
• Many people (~100) share a login node

at the same time.

Do not run your programs on the login nodes!

• Use the login nodes to submit jobs to the queue to be executed on the compute nodes
• Login nodes can have different hardware to compute nodes.

• Some build tests may fail if you try to compile on login nodes.

Login Nodes

• Programs should run on
the compute nodes.

• Access is provided via the scheduler
• Compute nodes have a fast interconnect

that allows them to communicate with each other
• Jobs can span multiple compute nodes
• Individual nodes are not that different in performance from a

workstation
• Parallelism across compute nodes is how significant

performance improvements are achieved.

Compute Nodes

Each compute node has one or more CPUs:
• Each CPU has multiple cores
• Each CPU has memory attached to it

Each node has an external network connection
Some systems have accelerators (e.g. GPUs)

Inside a Compute Node

Fast storage “inside” the supercomputer
• Temporary working area
• Might have local node storage

• Not shared with other users

• Usually have global storage
• All nodes can access the filesystems
• Either directly connected to the interconnect, or via router nodes
• The storage is shared. Multiple simultaneous users on different nodes will reduce

performance

High Performance Storage

Externally connected servers that are
dedicated to moving data to and from the
high performance filesystems.

• Data movers are shared, but most users will not notice.
• Performance depends on the other end, distance, encryption algorithms, and

other concurrent transfers.
• Data movers see all the global filesystems

hpc-data.pawsey.org.au

Data Mover Nodes

Submits jobs into the compute nodes
• Jobs organized in a queue
• Scheduler determines place in queue (dynamic)

At Pawsey we use SLURM
• Other schedulers used at different sites (LoadLevler, PBS, etc.)

As a user you interact with the queues

The scheduler runs jobs on the compute nodes on your behalf\

Scheduler

Within a terminal window, type:

ssh username@galaxy.pawsey.org.au

• Common terminal programs:
• Windows, use MobaXterm (download)
• Linux, use xterm (preinstalled)
• OS X, use Terminal (preinstalled) or xterm (download)

Command line SSH

• SSH uses fingerprints to identify computers … so you don't give your password
to someone pretending to be the remote host

• We recommend that you set up SSH key authentication to increase the security
of your account:

https://support.pawsey.org.au/documentation/display/US/Logging+in+with+SSH+keys

• Do not share your account with others, this violates the conditions of use (have
the project leader add them to the project)

• Please do not provide your password in help desk tickets, we never ask for your
password via email as it is not secure.

Account Security

https://support.pawsey.org.au/documentation/display/US/Logging+in+with+SSH+keys

Graphical Interfaces
• Remote graphical interface for some tasks available

• Uses X11 forwarding
• Graphical debuggers, text editors, remote visualisation
• Low performance over long distances

• Very easy to set up for Linux, Mac and MobaXterm clients Add -X flag to ssh

ssh -X username@galaxy.pawsey.org.au

• X11 generally not recommended
• For higher performance remote visualisation, use FastX:

remotevis.pawsey.org.au

Common login problems

• Forgot password
• Self service reset https://support.pawsey.org.au/password-

reset/
• Scheduled maintenance
• Check your email or

https://support.pawsey.org.au/documentation/display/US/Maint
enance+and+Incidents

• Blacklisted IP due to too many failed login attempts
• This is a security precaution
• Email the helpdesk with your username and the machine you are

attempting to log in to

https://support.pawsey.org.au/password-reset/
https://support.pawsey.org.au/documentation/display/US/Maintenance+and+Incidents

Exercise: Logging In

• Try logging in with your course account:

ssh couXXX@galaxy.pawsey.org.au

• Tips
• Password won’t be visible (security measure)
• Double-check hostname and username

User Environment

Software Stack
Various software is provided to support workflows on the systems:
• Operating System (SLES or CLE)
• Compilers (e.g. Intel, GCC, Cray, PGI)
• Debuggers and Profilers (e.g. MAP, DDT)
• Performant mathematical libraries (e.g. MKL, Lapack, Petsc)
• Parallel programming libraries (e.g. MPI)
• File format libraries for parallel IO (e.g. HDF5)

Project groups are expected to manage the installation of their own software stack

Applications that are widely used by a large number of groups may also be provided

All of the above software is not immediately available as soon as you log in

Modules

To prevent conflicts between software names and versions,
applications and libraries are not installed in the standard directory
locations.

Modules modify the environment to easily locate software, libraries,
documentation, or particular versions of the software

module load astropy

Module Commands
Command Description

module avail Show available modules

module list List loaded modules

module load modulename Load a module into the current environment

module unload modulename Unload a module from the environment

module swap module1 module2 Swap a loaded module with another

module show modulename Give help for a particular module

module help Show module specific help

Module Prerequisites
Some modules have prerequisites and order is important

Most modules depend on an architecture and compiler

System Architecture modules Compiler modules
Magnus, Galaxy cray-sandybridge

cray-ivybridge
cray-haswell

PrgEnv-cray
PrgEnv-gnu
PrgEnv-intel

Zeus sandybridge
broadwell

gcc
intel
pgi

Recommended Module Order

Example Load Order:
1) CPU Architecture
2) Compiler
3) Compiler Version
4) MPI (if needed)
5) CUDA (if needed)
6) Python version
7) All other libraries

Module Prerequisites
On Crays, switch to the desired programming environment
first:

module swap PrgEnv-cray PrgEnv-gnu

• Some modules can only be compiled for particular
combinations of architectures and compilers

• Loading these modules with the wrong prerequisites will
generate a conflict error:

> module load casacore

casacore/2.3.0(72):ERROR:150: Module
'casacore/2.3.0' conflicts with the currently
loaded module(s) 'PrgEnv-cray/6.0.4'

casacore/2.3.0(72):ERROR:102: Tcl command
execution failed: conflict PrgEnv-cray/6.0.4

> module show casacore

Compiled with gcc/4.9.3 under PrgEnv-gnu/6.0.4

Compiled with gcc/5.3.0 under PrgEnv-gnu/6.0.4

Compiled with gcc/6.1.0 under PrgEnv-gnu/6.0.4

Compiled with gcc/7.2.0 under PrgEnv-gnu/6.0.4

Compiled for craype-sandybridge

Compiled for craype-ivybridge

Compiled for craype-haswell

setenv CRAYOS_VERSION 6.0.4

conflict PrgEnv-intel/6.0.4

conflict PrgEnv-cray/6.0.4

conflict craype-broadwell

module load cray-mpich

module load cfitsio

module load wcslib

System vs user modules

Pawsey module paths are loaded into user environment by default

• module avail

Users can use group/user-installed modules as well

> module use /group/<project-name>/<user-id>/<pawsey_os>/modulefiles

Example

> module use /group/mwa/software/modulefiles

> module load wsclean

NOTE: User/group modules will appear first in module search/load operations

Filesystems

Lustre Architecture

Infiniband Interconnect

MDS

2
1

OSS

5
1

OSS

6
2

OSS

7
3

OSS

8
4

Clients {

MDT - Meta-Data Target

• Backend disk for the MDS

• Contain information about a Lustre
file system’s directory structure and
file names, permissions, extended
attributes, and file layouts

OST - Object Storage Target

• Backend disks for the OSS

• Contain a number of binary
objects representing the data for
files in Lustre

OSS - Object Storage Server

write(), read(), seek(), flock()

MDT - Meta-Data Server

open(), close(), stat(), unlink()

Filesystems at Pawsey

Filesystem Type Size User
quota

Group
quota

Purge Policy Backup System

/scratch Lustre 3 PB - - 30 days No Magnus,
Zeus

/group Lustre 3 PB - 1 TB - Yes All

/astro Lustre 2 PB 300 TB* - No Galaxy
only

/home NFS 15 TB 10 GB - - Yes All

Filesystem Best Practices
/home
• Don’t run jobs here
• Meant to store user-specific files (bashrc, ssh keys, etc.)

/group
• Medium-term storage (life of the project)
• Store “valuable” data here (e.g., input sets to be reused, final

outputs)
• Software builds/modulefiles
• Stuff to share with group

Filesystem Best Practices
/astro
• Run jobs here
• Transient storage
• Be mindful of group quotas (shared resource)

/scratch
• Similar to astro (production jobs)
• 30-day purge policy (continuous)
• Don’t circumvent purge policy
• Don’t store your thesis here (yes….this has happened)

Filesystem Best Practices
Deleting files
• For small number of files (and small filesizes) standard linux

command `rm` is fine
• For larger datasets, use `munlink` (see Pawsey Documenation)

> find ./directory -type f -print0 | xargs -0 munlink
> find ./directory -depth -type d -empty -delete

Avoids generating metadata operations (which is what produces a slowdown)

Similarly, avoid doing `ls` on large file counts (ls has to do a sort)
• There are flags you can pass to ls to minimise metadata ops.

Job Scheduling

Tell the scheduler what resources your calculation needs.
(Usually how many nodes and for how long)

Overestimating the time required means it will take longer to
find an available slot

Underestimating the time required means the job will get killed

Underestimating memory will cause your program to crash

Scheduling Your Job

Interacting with Pawsey Queues
All Pawsey supercomputers (Magnus, Zeus, Zythos and Galaxy)
use SLURM to manage queues.

The three essential commands:
sbatch jobscript
squeue
scancel jobid

You’ll get an identifier (i.e., jobid) when you sbatch the job:
> sbatch jobscript.slurm
Submitted batch job 2315399

Querying SLURM Partitions
To list the partitions when logged into a machine:
sinfo

To get all partitions in all local clusters:
sinfo -M all

For example:

username@magnus-1:~> sinfo

PARTITION AVAIL JOB_SIZE TIMELIMIT CPUS S:C:T NODES STATE NODELIST

workq* up 1-472 12:00:00 40 2:10:2 1 allocated* nid00492

workq* up 1-472 12:00:00 40 2:10:2 471 allocated nid00[008-063,072-091,096-123,160-163,200-255,264-319,324-491]

gpuq up 1-64 1-00:00:00 16 1:8:2 50 allocated nid00[124-127,132-152,164-188]

gpuq up 1-64 1-00:00:00 16 1:8:2 14 idle nid00[092-095,153-159,189-191]

longq up 1-252 1-00:00:00 40 2:10:2 1 allocated* nid00492

longq up 1-252 1-00:00:00 40 2:10:2 251 allocated nid00[324-491,493-575]

Querying the Queue
squeue displays the status of jobs in the local cluster

squeue
squeue –u username
squeue –p debugq

charris@zeus-1:~> squeue

JOBID USER ACCOUNT PARTITION NAME EXEC_HOST ST REASON START_TIME END_TIME TIME_LEFT NODES PRIORITY

2358518 jzhao pawsey0149 zythos SNP_call_zytho zythos R None Ystday 11:56 Thu 11:56 3-01:37:07 1 1016

2358785 askapops askap copyq tar-5182 hpc-data3 R None 09:20:35 Wed 09:20 1-23:01:09 1 3332

2358782 askapops askap copyq tar-5181 hpc-data2 R None 09:05:13 Wed 09:05 1-22:45:47 1 3343

2355496 pbranson pawsey0106 gpuq piv_RUN19_PROD n/a PD Priority Tomorr 01:53 Wed 01:53 1-00:00:00 2 1349

2355495 pbranson pawsey0106 gpuq piv_RUN19_PROD n/a PD Resources Tomorr 01:52 Wed 01:52 1-00:00:00 4 1356

2358214 yyuan pawsey0149 workq runGet_FQ n/a PD Priority 20:19:00 Tomorr 20:19 1-00:00:00 1 1125

2358033 yyuan pawsey0149 gpuq 4B_2 n/a PD AssocMaxJo N/A N/A 1-00:00:00 1 1140

2358709 pbranson pawsey0106 workq backup_RUN19_P n/a PD Dependency N/A N/A 1-00:00:00 1 1005

NAME – job name. Set this if you have lots of jobs.

ST – job state. R=running. PD=pending.

REASON – the reason the job is not running
• Dependency – job must wait for another to complete before it
• Priority – a higher priority job exists
• Resources – the job is waiting for sufficient resources

Querying the Queue (cont’d)
charris@zeus-1:~> squeue

JOBID USER ACCOUNT PARTITION NAME EXEC_HOST ST REASON START_TIME END_TIME TIME_LEFT
NODES PRIORITY
2358518 jzhao pawsey0149 zythos SNP_call_zytho zythos R None Ystday 11:56 Thu 11:56 3-01:37:07 1 1016

2358785 askapops askap copyq tar-5182 hpc-data3 R None 09:20:35 Wed 09:20 1-23:01:09 1 3332
2358782 askapops askap copyq tar-5181 hpc-data2 R None 09:05:13 Wed 09:05 1-22:45:47 1 3343
2355496 pbranson pawsey0106 gpuq piv_RUN19_PROD n/a PD Priority Tomorr 01:53 Wed 01:53 1-00:00:00 2 1349

2355495 pbranson pawsey0106 gpuq piv_RUN19_PROD n/a PD Resources Tomorr 01:52 Wed 01:52 1-00:00:00 4 1356
2358214 yyuan pawsey0149 workq runGet_FQ n/a PD Priority 20:19:00 Tomorr 20:19 1-00:00:00 1 1125
2358033 yyuan pawsey0149 gpuq 4B_2 n/a PD AssocMaxJo N/A N/A 1-00:00:00 1 1140

2358709 pbranson pawsey0106 workq backup_RUN19_P n/a PD Dependency N/A N/A 1-00:00:00 1 1005

Individual Job Information
scontrol show job jobid

charris@magnus-1:~> scontrol show job 2474075

JobId=2474075 JobName=m2BDF2

UserId=tnguyen(24642) GroupId=tnguyen(24642) MCS_label=N/A

Priority=7016 Nice=0 Account=pawsey0199 QOS=normal

JobState=RUNNING Reason=None Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

RunTime=03:13:09 TimeLimit=1-00:00:00 TimeMin=N/A

SubmitTime=12 Dec 2017 EligibleTime=12 Dec 2017

StartTime=10:41:04 EndTime=Tomorr 10:41 Deadline=N/A

PreemptTime=None SuspendTime=None SecsPreSuspend=0

Partition=workq AllocNode:Sid=magnus-2:53310

ReqNodeList=(null) ExcNodeList=(null)

NodeList=nid0[0041-0047,0080-0082,0132-0133,0208-0219,0224-0226,0251-
0253,0278-0279,0284-0289,0310-0312,0319,0324-0332,0344,0349-0350,0377-
0379,0385-0387,0484-0503,0517-0520,0525-0526,0554-0573,0620-0628,0673-
0686,0689-0693,0732,0894-0895,0900-0907,1036-1037,1048-1051,1134-
1138,1202-1203,1295-1296,1379-1380,1443-1446,1530-1534]

BatchHost=mom1

NumNodes=171 NumCPUs=4104 NumTasks=171 CPUs/Task=1 ReqB:S:C:T=0:0:*:*

TRES=cpu=4104,mem=5601960M,node=171

Socks/Node=* NtasksPerN:B:S:C=0:0:*:1 CoreSpec=*

MinCPUsNode=1 MinMemoryCPU=1365M MinTmpDiskNode=0

Features=(null) Gres=(null) Reservation=(null)

OverSubscribe=NO Contiguous=0 Licenses=(null) Network=(null)

Command=/scratch/pawsey0199/tnguyen/run_test_periodicwave/stiff_problem/forMagnus/4thO
rder/accuracy_check/eta_1/PeriodicBCs/BDF2/m2/gpc.sh

WorkDir=/scratch/pawsey0199/tnguyen/run_test_periodicwave/stiff_problem/forMagnus/4thOrd
er/accuracy_check/eta_1/PeriodicBCs/BDF2/m2

StdErr=/scratch/pawsey0199/tnguyen/run_test_periodicwave/stiff_problem/forMagnus/4thOrde
r/accuracy_check/eta_1/PeriodicBCs/BDF2/m2/m2BDF2

StdIn=/dev/null

StdOut=/scratch/pawsey0199/tnguyen/run_test_periodicwave/stiff_problem/forMagnus/4thOrde
r/accuracy_check/eta_1/PeriodicBCs/BDF2/m2/m2BDF2

Power=

Reservations

Nodes can be manually reserved for a certain time by the system
administrators.

• Email the helpdesk to ask for a reservation. Only ask if you cannot work via
the standard queues.

• For scheduled maintenance - we reserve the whole machine.
• For interactive use – debugging a many-node job or for a training course.
• A once-off urgent deadline.

[reaper@magnus-2 ~]> sinfo -T

RESV_NAME STATE START_TIME END_TIME DURATION NODELIST

courseq ACTIVE 09:00:00 17:00:00 08:00:00 nid000[16-23]

SLURM needs to know two things from you:
1. Resource requirement.

• How many nodes and how long you need them for.

2. What to run.
• You cannot submit an application directly to SLURM. Instead, SLURM

executes on your behalf a list of shell commands.
• In batch mode, SLURM executes a jobscript which contains the commands.
• In interactive mode, type in commands just like when you log in.
• These commands can include launching programs onto the compute nodes

assigned for the job.

Job Request

#SBATCH --job-name=myjob à makes it easier to find in squeue

#SBATCH --account=courses01à project accounting

#SBATCH --nodes=2 à number of nodes

#SBATCH --time=00:05:00 à walltime requested

#SBATCH --export=NONE à start with a clean environment

Common sbatch directives

#!/bin/bash -l

#SBATCH --job-name=myjob

#SBATCH --account=courses01

#SBATCH --nodes=1

#SBATCH --time=00:05:00

#SBATCH --partition=workq

#SBATCH --reservation=courseq

#SBATCH --export=NONE

module load python/2.7.14

#The next line is executed on the compute node

srun --export=all –n 1 python --version

Example Jobscript

Standard output and standard error from your jobscript are collected
by SLURM, and written to a file in the directory you submitted the job
from when the job finishes/dies.

slurm-jobid.out

SLURM has options to modify stdout/stderr writing
• Renaming files
• Specifying location
• Splitting stderr/stdout

SLURM Output

Interactive Jobs
If there are no free nodes, you may need to wait while the job is in the queue.

ddeeptimahanti@galaxy-1:~> salloc --nodes=1 --reservation=courseq
salloc: Pending job allocation 2315927
salloc: job 2315927 queued and waiting for resources

It may appear to hang – waiting for resources to become available.

For small interactive jobs on Magnus use the debugq to wait less.
salloc --tasks=1 --time=10:00 -p debugq

Queue Best Practices
Get good estimates on wall time

For Galaxy, no need to specify memory
• You get it all (nodes are exclusive)

Zeus has shared nodes
• Need to specify number of cores and/or memory

Queues are dynamic
• Priority and position in queue may change

Project Accounting

Allocations at Pawsey
Merit allocations are awarded typically for 12 months

Merit allocations are divided evenly between the four quarters of the year, to avoid end-of-year
congestion. Priorities reset at the start of the quarter for merit allocations

Director share allocations are typically awarded for up to 12 months, or until the time is consumed,
and do not reset automatically

The job priority in the queue is affected the following:
• usage relative to allocation
• size of request
• length of time in queue

Project Usage
CPU usage can be checked using the pawseyAccountBalance tool:

pawseyAccountBalance -p projectname -u

charris@magnus-2:~> pawseyAccountBalance -p pawsey0001 -u
Compute Information

Project ID Allocation Usage % used
---------- ---------- ----- ------
pawsey0001 250000 124170 49.7

--mcheeseman 119573 47.8
--mshaikh 2385 1.0
--maali 1109 0.4

--bskjerven 552 0.2
--ddeeptimahanti 292 0.1

Filesystem Usage
pawseyAccountBalance can also be used to query disk usage:

pawseyAccountBalance -p projectname -u

charris@magnus-2:~> pawseyAccountBalance -p pawsey0001 –storage

Storage Information

/group usage for pawsey0001, used = 6.21 TiB, quota = 15.00 TiB

/astro usage for pawsey0001, used = 5.29 TiB, quota = 0.00 bytes

Lustre Tools

Can also use Lustre command-line tools to get disk usage:

lfs quota -g projectname /astro

lfs quota -g projectname /group

And for home (not a Lustre FS):

quota -s -f /home

Job Information
The sacct tool provides high-level information on the jobs that have been run:

sacct

There are many arguments, some commonly used options are:
-a display jobs for all users, not just the current user
-A projectname display jobs from this project account
-S yyyy-mm-ddThh:mm:ss display jobs after this start time
-E yyyy-mm-ddThh:mm:ss display jobs before this end time
-X Ignore job steps (i.e. srun lines)

Job Information (cont.)
charris@magnus-1:~> sacct -a -A pawsey0001 -S 2017-12-01 -E 2017-12-02 -X

JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
2461157 bash debugq pawsey0001 24 COMPLETED 0:0

2461543 bubble512 debugq pawsey0001 24 FAILED 1:0
2461932 bash workq pawsey0001 24 FAILED 2:0
2462029 bash workq pawsey0001 24 FAILED 127:0
2462472 bash debugq pawsey0001 24 COMPLETED 0:0

2462527 jobscript+ workq pawsey0001 960 COMPLETED 0:0

Calculating storage quota
Files have 2 ownership categories: User and Group

> ls -alh test.slm

-rw-r--r-- 1 bskjerven pawsey0001 283 Jun 9 13:17 test.slm

Group quota is based on group ownership of a file (e.g. pawsey0001 above)

Users are also a valid group:

> ls -alh $HOME/test.slm

-rw-r--r-- 1 bskjerven bskjerven 120 Sep 25 11:10 /home/bskjerven/test.slm

Need to be aware when moving/copying files…can generate ”disk quota exceeded errors”

Script available to fix permissions:

fix.group.permission.sh projectname

Data Transfer

Data Transfer Nodes
All transfers handled via secure copies

• scp, rsync, etc.

Interactive use on login nodes is discouraged
• Small transfers may be okay

Dedicated servers for transferring large amounts of data

/home, /scratch and /group visible

Externally visible scp

Supercomputer Hostname
Magnus / Zeus hpc-data.pawsey.org.au
Galaxy hpc-data.pawsey.org.au

Data Transfer Nodes
For file transfers, run scp from the remote system using the data transfer nodes.

For example, to copy a file to Pawsey:
scp filename username@hpc-data.pawsey.org.au:/group/projectname/username

And to copy a file from Pawsey:
scp username@hpc-data.pawsey.org.au:/group/projectname/username/filename $PWD

Use the same username and password as a normal ssh login.

SCP clients available (Filezilla, WinSCP, etc.), but be aware of things like file permissions and group
ownership

copyq
• Batch job access to data transfer

nodes

• “copyq” partition

• Located on Zeus
• Available to all Pawsey machines

• Serial job
• No srun needed

#!/bin/bash –login

#SBATCH --partition=copyq

#SBATCH --cluster=zeus

#SBATCH --ntasks=1

#SBATCH --account=[user-account]

#SBATCH --time=06:00:00

#SBATCH --export=NONE

stage data

module load python

python ./data-mover.py

Advanced Jobscripts

Job Arrays
• A mechanism for submitting collections

of jobs
• Running the same program on many

different data sets
• More efficient than submitting lots of

individual jobs
• User defined range of elements

• 0,1,2,3
• 0-9
• 0-9,20-29

#SBATCH --array=<indexes>

• Maximum number of elements
is 1000

• Identify which index:
$SLURM_ARRAY_TASK_ID

• Overall job:
$SLURM_ARRAY_JOB_ID

Example: Job Arrays
#!/bin/bash --login

#SBATCH --array=8,16,32

#SBATCH --output=array-%j.out

#SBATCH --nodes=1

#SBATCH --time=00:01:00

#SBATCH --account=pawsey0001

#SBATCH --export=NONE

time srun -n 24 --export=all ./darts-mpi $SLURM_ARRAY_TASK_ID

Job dependencies

• Useful tool for creating advanced workflows
• Supported between jobs, job arrays, array elements
• Not between jobs on different clusters

#SBATCH --dependency=type:jobid,...

A

B

C

F

E

D

G

H

Job dependencies
Dependency List Description
after:jobid Begin after the listed job has begun execution
afterany:jobid Begin after the listed job has terminated
afternotok:jobid Begin after the listed job has terminated in a failed state

afterok:jobid Begin after the listed job has successfully executed

singleton Begin after any job of the same job name and user has terminated

• Multiple jobids allowed, eg jobid:jobid
• Job array elements referenced as jobid_index
• Jobs that are requeued after failure treated the same

Chaining Jobs
• Submit the next job from within a batch job at the start or the end of the job

• Useful when running jobs across clusters

A

B

C

D

E

Example: Chaining Jobs
#!/bin/bash -l

#SBATCH --account=courses01

#SBATCH --nodes=1

#SBATCH --time=00:05:00

#SBATCH --export=NONE

: ${job_number:="1"}

my_job_number=${job_number}

job_number_max=5

echo "running job ${SLURM_JOB_ID}"

if [[${job_number} -lt ${job_number_max}]]

then

((job_number++))

next_jobid=$(sbatch --export=job_number=${job_number} –d

afterok:${SLURM_JOB_ID} job.slurm | awk '{print $4}')

echo "submitted ${next_jobid}"

fi

echo "doing some computations for " ${my_job_number} " seconds"

sleep ${my_job_number}

echo "${SLURM_JOB_ID} done”

Example: Data staging
#!/bin/bash --login
#SBATCH --partition=workq
#SBATCH --ntasks=1
#SBATCH --account=pawsey0001
#SBATCH --time=00:05:00
#SBATCH --export=NONE

run simulation
export OMP_NUM_THREADS=24
srun --export=all -n 1 -c 24 hostname

transfer results
sbatch -M zeus --partition=copyq script-data-copy.sh

zeusmagnus

srun

sbatch sbatch -M zeus

script-data-copy.sh

User Documentation:

portal.pawsey.org.au

Helpdesk:

help@pawsey.org.au

Acknowledgements: The Pawsey Supercomputing Centre is supported by $90
million funding as part of the Australian Government’s measures to support
national research infrastructure under the National Collaborative Research
Infrastructure Strategy and related programs through the Department of
Education. The Centre would also like to acknowledge the support provided by
the Western Australian Government and its Partner organisations.

www.pawsey.org.au

Questions?

