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Imaging and Deconvolution Il

* How and why do the basic assumptions break down?
* Techniques used to extend imaging and deconvolution

* Major cycles and minor cycles
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Calibration/Imaging Basic Assumptions

Calibrated visibilities sample the same 2D FFT of the same sky

Vp(6) = g;(Egi(eVSev) || 10 m) et m i

N\ /

Gains are antenna-based and
independent of direction

Sky is fixed over the
course of an observation

|

2D Fourier transform between
sky and gridded visibilities
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How and why do the basic
assumptions break down?




How do the assumptions break down?

Vit ) = Gt Sji(ev) | j-z(z, m) e~ i2mCuL4vm)

When visibilities have a different response to the sky

* i.e. different primary beams
e With time (e.g. rotating antenna beams)
e With frequency (e.g. beam width o« A/D)
e With antenna (e.g. pointing errors, beam-former variability)

With baseline (e.g. decorrelation)

With beam (for multi-beam or phase-array feed systems)

With polarisation (e.g. different XX and YY beams when forming Stokes |)
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JVLA Primary Beam Variability

Pointing offsets for two JVLA antennas
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Bhatnagar & Cornwell 2017 (arXiv:1808.04516)
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JVLA Primary Beam Variability

Azimuthal asymmetries rotate on the sky
when tracking a field with alt-az dishes
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Jagannathan et al. 2017 (arXiv:1706.01501)
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MWA Primary Beam Variability

Phased array beams from a tile of dipoles that are fixed to
the ground can change shape as they track

Time-dependent tile response
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MWA Primary Beam Variability

And can change from tile to tile
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Sokolowski et al. 2017
(arXiv:1710.07478)
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Beam measurements at ~ 138 MHz
using ORBCOMM satellites
Line et al. 2018 (arXiv:1808.04516)




ASKAP Primary Beam Variability

5755 AKOO 1015 MHz

Thanks to Dave Mcconnell




ASKAP Primary Beam Variability

AKO5 beam 00 792MHz, XX AKO5 beam 18 792MHz, XX

Thanks to Aidan Hotan
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ASKAP Primary Beam Variability

AKO5 beam 00 792MHz, YY AKO5 beam 18 792MHz, YY

Thanks to Aidan Hotan
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How do the assumptions break down?

Vik(t,v) = G (8, v)Sji (¢, v) j j AZE™ (L, m, t,v, p)I (1, m) e~ 2rHvm) gigm

When visibilities see a different atmosphere

* lonospheric refraction
* lonospheric Faraday rotation
* Troposphere (at GHz frequencies)
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lonospheric Refraction Variability

z, 1-min VLA snapshots
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Loi et al. (2015) arXiv:1504.06470
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lonospheric Refraction Variability

E-W offset (arcmin)

The refraction has a known dependence on frequency.

For a small array like MWA, the refraction often results in time-dependent position shifts.

See Natasha’s lecture on Wednesday.

Loi et al. 2015 (arXiv:1504.06470)
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Declination [deg]

Jordan et al. 2017 (arXiv:1707.04978)
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lonospheric Faraday Rotation Variability

* The angle of linear polarisation generally rotates as a function of frequency.
* Transform to “Rotation Measure” space to average in frequency

* lonospheric Faraday rotation changes Rotation Measure spectra.

* See Emil’s lecture on Friday.
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How do the assumptions break down?

Vik(t,v) = Gji (L, v)Sjr(t,v) j J e‘izn(u”"m)dldm

When visibilities see a different sky

e Radio transients

» Spectra of radio sources

* Faraday rotation of linearly polarised objects
* Near by objects: the sun, planets, etc.
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How do the assumptions break down?

ij(t, V) = ij(t, V)Sjk(t; V) jf (L, m) e—i27t(ul+vdldm

When the visibility-sky relationship is not 2D

* w-terms.
 Particularly bad for large fields of view.
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Why push the 2D limits?

* To improve sensitivity and/or uv coverage.
e By averaging in time, frequency, polarisation, etc.

* To carry out large surveys.
e Large FoV to increase survey speed.
e Large FoV to increase instantaneous footprint.

* To achieve high dynamic range at low frequencies.
e The low-frequency sky is crowded - need to image the full FoV.
e Many smaller antennas for ionospheric calibration - large FoV.

* To get to most out of your instrument.
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Techniques used to extend
imaging and deconvolution




Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

* Use a convolution kernel with a desired image-domain response
o recal: F(FxG)=F(F)*F(G)

e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

* Use a convolution kernel with a desired image-domain response
e recal: H(FxG)=F(F)*FG)
e e.g. &F( prolate §pheroidgl window fn ) = prolate spheroidal gridding kernel
e can be different for eachVisibility

The sky in
the field
of view

spheroidal
gridding
kernel

spheroidal window
function to limit

aliasing from outside

the field of view
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

e Use a convolution kernel with a desired image-domain response
e recall F(FxG)=F(F)*F(G)
e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility
* W-Projection

e Convolutional gridding with §( e/2™Wik(V1=12-m?-1) )

e Fresnel propagation to a common plane

e Kernels become very large for wide field of view (o« 64)
— Expensive to generate - cache (x 69)
— Algorithms can become limited by memory or memory-bandwidth.
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

e Use a convolution kernel with a desired image-domain response
e recall F(FxG)=F(F)*F(G)

e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility

* A-Projection
e Convolutional gridding with &( A]‘:’,}St*(l, m,t,v,p) )
e Cancel direction-dependent phases, square amplitudes.

e Optimal weighting for mosaicking, snapshot stacking, etc.

e Can grid multiple beams or mosaic pointings on a single uv grid -
— recall: F( A(l+dl,m+dm) ) = F( A(l,m) ) exp( -i2m(u.dl+v.dm) )
— exacerbates W-Projection issues (increased field of view)
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

e Use a convolution kernel with a desired image-domain response
e recal: F(FxG)=F(F)*FG)
e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility
* |-Projection o wmomswisns
e Convolutional gridding with §( A]‘:Z”O*(l, m,t,v,p) ) FER A

e Like A-Projection, but correcting for ionospheric phase shifts.

e Very fast update rate (= 10 sec)

-5 0 5 10 15 20

x(°)
e Not widely used, but one of only a few options for large arrays.  loietal (2015)
arXiv:1504.06470
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

e Use a convolution kernel with a desired image-domain response
e recall F(FxG)=F(F)*F(G)

e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility

* F(AXBxCx- ) =F(A)*F(B)*F(C)*F(-)

e e.g. convolutional gridding with &( A]‘:’,}St* X A}%"O*x e 2w (V1-1?-m?-1) )
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Convolutional Gridding

* To use a FFT, need to interpolate visibilities onto the uv grid.

e Use a convolution kernel with a desired image-domain response
e recall F(FxG)=F(F)*F(G)
e e.g. &( prolate spheroidal window fn ) = prolate spheroidal gridding kernel
e can be different for each visibility

* Image-domain gridding: transform small regions of the uv plane
back to the image plane and apply the convolutions as
multiplications

.« e.g. g( A]*k X eiZTCij(\/l—lz_mZ—l) X eiZn(ul+vm) X V]k))
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Visibility Segmentation

 Split the visibilities into multiple 2D transforms and stack images
e Reduce w-term effects

e W-Stacking

-stackin
e Grid visibilities to their nearest “w-plane” e
e FFT each separately
e Multiply images by e~2™(V1-1?-m?=1) 54 stack
* Warped Snapshots
e Grid visibilities to a best-fit 2D plane for short snapshots Warped

snapshots

e FFT each separately

* Regrid images to a common frame and stack
e Many A"t and A'°"° terms are approx. constant for a given snapshot
— Can be applied to the snapshot images, rather than during gridding.
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Visibility Segmentation — Snapshots

Determine wide-field warp Re-sample to a static frame

Simulated data: field centre: -3.5 to +3.5 hrs
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Visibility Segmentation — Snapshots

NN &xx

All-sky polarised
tile response
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Fourier ®
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Visibility Segmentation — Snapshots
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Image Facets

* Split the sky into smaller segments.

* Wide-field calibration and imaging factors can be applied to each
separately.
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Combined Approaches

Most packages support multiple approaches that can be / have
been blended together to meet computing and/or scientific needs.

Facets/Mosacks W-projection

~

Warped

snapshots@/r
ASKAPsoft example
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Wide-Band Imaging

Increase image sensitivity: reduces as 1/vB
Increases uv coverage
Better angular resolution at higher frequencies

But cannot simply average visibilities: decorrelation and smearing!

And the sky and the instrument change with frequency
e Although many cosmic sources vary smoothly

34 | 2018 ICRAR/CASS Radio School




Multi-Frequency

Decompose model image into spectral Taylor terms:

N¢ . ¢
ymdl — E (V VO) jcc
1% — t
Vo
termt
Ig+Iglog e
It I, =1, (vlo) (VO), then approximately:
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Multi-Scale

Decompose model into multiple spatial scales:

NS
mdl _ shp cc
I = z I * Ig

scale s

Spatial Basis (CASA, ASKAPsoft):
 tapered, truncated parabolas with widths proportional to s.
 prolate spheroidal wavefunction used for truncation
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MS-MFS (or M&M)

Decompose model image into terms and scales:

Imdl zz(v — Vo) [Ishp Ici]

 Estimate the sky via joint deconvolution of the brightness at a
reference frequency and Taylor terms at N, spatial scales.

* Need to avoid CLEANing too deep!

e In general neither scales nor terms are orthogonal
e Can be a highly coupled system, often starting with a very poor model.

Rau & Cornwell 2011 (arXiv:1106.2745)
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ASKAPsoft M&M: BasisFunctionMFS

Based on the CASA algorithm.
Jointly deconvolve MFS, separately deconvolve MS

Normal equations for 2" order expansion:

coupling matrix: C¢, r, = Ipsf (0,0)

- ~ [rSky rdirtyn . doy itz .
Coo Co1 Co Iy Iy 1750 =" *{z <%) PS5
sk dirt
° Cl,O C1’1 Cl,z 11 y — 11 y v
C20 Cz1 Czaf| sky dirty = {5 () 1)
) al R 1PN

Choose peak for this scale (max(ldirty) or other) and normalise
dirty

Select dominant scale and for all t: CLEAN 1, and update I{¢
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Major cycles and minor cycles




Image-Based Deconvolution Limitations

 Pixelisation and gridding effects
e Need infinite CCs to CLEAN an unresolved source that lies between pixels
e Qut-of-field sidelobes from in-field sources alias back into the image
e Convolutional gridding is not a pure interpolation — also smoothing

* Limited accuracy of PSF sidelobes
e Due to wide-field effects and the imaging approach
e Due to computational limitations (limited oversampling, w-planes, etc.)

* Coupling of MSMFS scales and terms
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Image-Based Deconvolution Limitations

Common solution:
Image residual visibilities and iteratively improve sky model

* e.g. Cotton-Schwab CLEAN:

1. Do ashallow CLEAN

2. FFT CLEAN component image to the uv domain

3. “De-grid” to form model visibilities and subtract from observed visibilities
4. Form residual image and return to 1 (unless converged)

* Visibility subtraction is accurate and avoids many of the limits

e Use a source finder on restored images to build model images?
e Accurate centroiding.
¢ Include residual flux in sky model.
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Imaging and Predicting

Visibility

Image
“invert”
FastFouner
( inverse ): |
transform

Invert Workflow
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Visibility
“predict”

forward
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Visibilities

Vsnbility

Model
Visibilities

Dlrect Fourier

Strong
Component:
Components,

Distribute?
Images

Predict Workflow
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Components



Major Cycle

/  Iniial  /
* Just pass residual l /_Sky Model / l
CLEAN components? .
. fg;ugl;fr:fsgLEAN Y Sky Model Predict generation of model
i | visibilities
* Run source finder on

restored images?

Model /
Visibilities
Subtract model
Observed visibilities (from
Visibilities .
: observed or previous
Model / / Residual /
Image Visibilities
v

residual set)
Residual Image residual
Docovole images [pvett visibilities

Minor Cycle: CLEAN
down to the sidelobe
level of brightest pixel
in the residual image
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Example — Edge Features from diffuse emission

Edge feature (Restored Image)

J2000 Declination

05"48™ 4™ 3@ g6™ 33" 0™ 2
J2000 Right Ascension
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Example — Due to snapshotting & pre-conditioning

LMC regular params

J2000 Declination

05855™ 45™ 40™ 35T 30T 25T 20™
J2000 Right Ascension
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IMC 21A SB 1997(Weightsclipping 0.12) 1t-0 IMC—21A Cmodel SB 1997(Wiclipping—0.12) IL=0
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Self Calibration

l

Update Sky

Initial Initial Cal
/ Sky Model Solutions / l

e /
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Updated
Sky Model Solutions
Model / / New /
Visibilities Solutions
Update !
Observed Cal? Bps & Model Solve
Visibilities . Visibilities alibration
Update
Sky Model?
/ Residual /
Visibilities
v
Residual
Images |ﬂV,0ﬂ




High Performance Computing

w
Sky Model / [
oo S '

-

— "
e
— X

Model 7
Visibilities

Straightforward
data parallelism
over frequency in
major cycle

Observed
Visibilities

Split into many sub- %_Resid
. . Visibiliti

images (i.e. facets)?

Potential bottleneck —
at the minor cycle - |*_Images

Heavy use of /

multi-threading?

48 | 2018 ICRAR/CASS Radio School




Summary

* Wide fields of view, wide bandwidths, low frequencies and high
dynamic range complicate synthesis imaging and deconvolution.

* There are a wide variety of approaches to push the limits, most
coming with computational overheads.

* More information to come on various topics:

ASKAPsoft and RTS lectures this afternoon

Wed: lonosphere and calibration at low frequencies (Natasha)
Wed: Wide-field imaging and mosaicking (Tim)

e Fri: High dynamic range imaging (lan)

e Fri: Polarimetry (Emil)

e Fri: Spectral line processing (Karen)

e Fri: Transient imaging and detection (Christene)

e Fri: Source extraction and characterisation (Paul and Tobias)
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A few other approaches that were skipped

* The Maximum Entropy Method (MEM) — diffuse structure

* Compressed Sensing — find “CLEAN components” in other sparse
domains (e.g. the wavelet transform of an image)

* Peeling — generate local calibration solutions for strong sources
* Forward modelling — accurately calculate direction-dep. PSF

* RM synthesis — Image de-rotated “rotation measure” images
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