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Imaging and Deconvolution II

• How and why do the basic assumptions break down?

• Techniques used to extend imaging and deconvolution

• Major cycles and minor cycles
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Calibration/Imaging Basic Assumptions

Calibrated visibilities sample the same 2D FFT of the same sky

!"# $, & = ("($, &)(#∗($, &),"#($, &)-. /,0 12345 6789: ;/;0
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Gains are antenna-based and 

independent of direction

Sky is fixed over the 

course of an observation

2D Fourier transform between 

sky and gridded visibilities



How and why do the basic 
assumptions break down?
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How do the assumptions break down?

!"# $, & = ("# $, & )"# $, & *+"#,-./ 0, 1, $, &, 2 3 0,1 45,67 89:;< =0=1

When visibilities have a different response to the sky

• i.e. different primary beams

• With time (e.g. rotating antenna beams)

• With frequency (e.g. beam width ∝ ?/D)

• With antenna (e.g. pointing errors, beam-former variability)

• With baseline (e.g. decorrelation)

• With beam (for multi-beam or phase-array feed systems)

• With polarisation (e.g. different XX and YY beams when forming Stokes I)
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JVLA Primary Beam Variability
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Bhatnagar & Cornwell 2017 (arXiv:1808.04516)

Pointing offsets for two JVLA antennas

RR(t)

LL(t)

elevation

azimuth



JVLA Primary Beam Variability

2018 ICRAR/CASS Radio School7 |

Jagannathan et al. 2017 (arXiv:1706.01501)

Azimuthal asymmetries rotate on the sky 

when tracking a field with alt-az dishes



MWA Primary Beam Variability
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Phased array beams from a tile of dipoles that are fixed to 

the ground can change shape as they track

HA=-2.1 hrs HA=-1.0 hrs HA=1.0 hrs HA=2.1 hrs

Time-dependent tile response

Time-dependent error

Simulated MWA primary beams



MWA Primary Beam Variability
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Beam measurements at ~ 138 MHz 

using ORBCOMM satellites

Line et al. 2018 (arXiv:1808.04516)

Full Embedded Element 

primary beam models. 

Sokolowski et al. 2017 

(arXiv:1710.07478)

Measured 

primary beams

Full tile

One dead 

dipole

East-West slice North-South slice

And can change from tile to tile 



ASKAP Primary Beam Variability
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Thanks to Dave Mcconnell



ASKAP Primary Beam Variability
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Thanks to Aidan Hotan

AK05 beam 00 792MHz, XX AK05 beam 18 792MHz, XX



ASKAP Primary Beam Variability
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Thanks to Aidan Hotan

AK05 beam 00 792MHz, YY AK05 beam 18 792MHz, YY



How do the assumptions break down?

!"# $, & = ("# $, & )"# $, & *+"#,-. /, 0, $, &, 1 2 /,0 34567 89:;. </<0

When visibilities see a different atmosphere

• Ionospheric refraction

• Ionospheric Faraday rotation

• Troposphere (at GHz frequencies)

2018 ICRAR/CASS Radio School13 |



Ionospheric Refraction Variability
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Cotton (2004) ASP Conf. Series 345, 74 MHz, 1-min VLA snapshots

Loi et al. (2015) arXiv:1504.06470



Ionospheric Refraction Variability
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Loi et al. 2015 (arXiv:1504.06470)

• The refraction has a known dependence on frequency.

• For a small array like MWA, the refraction often results in time-dependent position shifts.

• See Natasha’s lecture on Wednesday.

Jordan et al. 2017 (arXiv:1707.04978)



Ionospheric Faraday Rotation Variability
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Lenc et al. 2017 (arXiv:1607.05779)

• The angle of linear polarisation generally rotates as a function of frequency.

• Transform to “Rotation Measure” space to average in frequency

• Ionospheric Faraday rotation changes Rotation Measure spectra.

• See Emil’s lecture on Friday.



How do the assumptions break down?

!"# $, & = ("# $, & )"# $, & *+ ,,-, $, & ./012 34567 8,8-

When visibilities see a different sky

• Radio transients

• Spectra of radio sources

• Faraday rotation of linearly polarised objects

• Near by objects: the sun, planets, etc.
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How do the assumptions break down?

!"# $, & = ("# $, & )"# $, & *+ ,,- ./012 3456758(:/;) =,=-

When the visibility-sky relationship is not 2D

• w-terms.

• Particularly bad for large fields of view.
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Why push the 2D limits?

• To improve sensitivity and/or uv coverage.

• By averaging in time, frequency, polarisation, etc.

• To carry out large surveys.

• Large FoV to increase survey speed.

• Large FoV to increase instantaneous footprint.

• To achieve high dynamic range at low frequencies.

• The low-frequency sky is crowded → need to image the full FoV.

• Many smaller antennas for ionospheric calibration → large FoV.

• To get to most out of your instrument.
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Techniques used to extend 
imaging and deconvolution
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Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility



Convolutional Gridding

2018 ICRAR/CASS Radio School22 |

• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

spheroidal window 

function to limit 

aliasing from outside 

the field of view

The sky in 

the field 

of view

spheroidal 

gridding

kernel

visibility



Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

• W-Projection

• Convolutional gridding with !( "#$%&'( )*+,*-,*) )

• Fresnel propagation to a common plane

• Kernels become very large for wide field of view (∝ /4)

– Expensive to generate → cache (∝ /6)

– Algorithms can become limited by memory or memory-bandwidth.

I(l,m)

u,v

NS,EW



Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

• A-Projection

• Convolutional gridding with !( "#$
%&'(∗ *, ,, -, ., / )

• Cancel direction-dependent phases, square amplitudes.

• Optimal weighting for mosaicking, snapshot stacking, etc.

• Can grid multiple beams or mosaic pointings on a single uv grid

– recall: !( A(l+dl,m+dm) ) = !( A(l,m) ) exp( -i20(u.dl+v.dm) )

– exacerbates W-Projection issues (increased field of view)

FFT



Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

• I-Projection

• Convolutional gridding with !( "#$
%&'&∗ ), +, ,, -, . )

• Like A-Projection, but correcting for ionospheric phase shifts.

• Very fast update rate (≈ 10 sec)

• Not widely used, but one of only a few options for large arrays. Loi et al. (2015) 

arXiv:1504.06470



Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

• !( A × B × C × ⋯ ) = !( A ) !( B ) !( C ) !( ⋯ )

• e.g. convolutional gridding with !( #$%
&'()∗ × #$%

&,',∗× -&./012 345647643 )



Convolutional Gridding
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• To use a FFT, need to interpolate visibilities onto the uv grid.

• Use a convolution kernel with a desired image-domain response

• recall: !( F × G ) = !( F ) !( G )

• e.g. !( prolate spheroidal window fn ) = prolate spheroidal gridding kernel

• can be different for each visibility

• Image-domain gridding: transform small regions of the uv plane 
back to the image plane and apply the convolutions as 
multiplications

• e.g. !( "#$
∗ × '()*+,- ./01/21/. × '()* 30452 × 6#$))



Visibility Segmentation
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W-stacking

Warped 

snapshots

• Split the visibilities into multiple 2D transforms and stack images

• Reduce w-term effects

• W-Stacking

• Grid visibilities to their nearest “w-plane”

• FFT each separately

• Multiply images by !"#$%& '"()"*)"' and stack

• Warped Snapshots

• Grid visibilities to a best-fit 2D plane for short snapshots

• FFT each separately

• Regrid images to a common frame and stack

• Many Ainst and Aiono terms are approx. constant for a given snapshot

– Can be applied to the snapshot images, rather than during gridding.



Visibility Segmentation — Snapshots
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Simulated data: field centre: -3.5 to +3.5 hrs

Determine wide-field warp Re-sample to a static frame



Visibility Segmentation — Snapshots
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NN←xx NN←xy NN←yx NN←yy

All-sky polarised

tile response

Fourier

response

Deal with curved sky 

in the image domain

Remaining 

Instrument Fourier 

response



Visibility Segmentation — Snapshots
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NN←xx NN←xy NN←yx NN←yy

All-sky polarised

tile response

Fourier

response

Deal with curved sky 

in the image domain

Remaining 

Instrument Fourier 

response



Image Facets
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• Split the sky into smaller segments.

• Wide-field calibration and imaging factors can be applied to each 
separately.



Combined Approaches
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Facets/Mosacks

Warped 

snapshots

W-projection

W-stacking

Most packages support multiple approaches that can be / have 
been blended together to meet computing and/or scientific needs.

ASKAPsoft example



Wide-Band Imaging

• Increase image sensitivity: reduces as 1/ #

• Increases uv coverage

• Better angular resolution at higher frequencies

• But cannot simply average visibilities: decorrelation and smearing!

• And the sky and the instrument change with frequency

• Although many cosmic sources vary smoothly
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Multi-Frequency

Decompose model image into spectral Taylor terms:

!"#$% = '
()*# (

+, - − -/
-/

(
!(00

If !" = !"1 "
"1

23425678 9
91 , then approximately:

• !/00 = !"1
• !:00 = !; !"1
• !<00 = 23 23 =:

< − !> !"1

2018 ICRAR/CASS Radio School35 |



Multi-Scale

Decompose model into multiple spatial scales:

!"#$ = &
'()$* '

+,
!''-. ∗ !'((

Spatial Basis (CASA, ASKAPsoft):

• tapered, truncated parabolas with widths proportional to s.

• prolate spheroidal wavefunction used for truncation
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MS-MFS (or M&M)

Decompose model image into terms and scales: 

!"#$% = '
(

)*
'
+

), - − -/
-/

(
!++01 ∗ !+,(44

• Estimate the sky via joint deconvolution of the brightness at a 
reference frequency and Taylor terms at Ns spatial scales.

• Need to avoid CLEANing too deep!

• In general neither scales nor terms are orthogonal

• Can be a highly coupled system, often starting with a very poor model.
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Rau & Cornwell 2011 (arXiv:1106.2745)



ASKAPsoft M&M: BasisFunctionMFS

• Based on the CASA algorithm.

• Jointly deconvolve MFS, separately deconvolve MS 

• Normal equations for 2nd order expansion:

•

!"," !",$ !",%
!$," !$,$ !$,%
!%," !%,$ !%,%

&"'()
&$'()
&%'()

=
&"+,-.)
&$+,-.)
&%+,-.)

• Choose peak for this scale (max &"+,-.) or other) and normalise

• Select dominant scale and for all t: CLEAN &.+,-.) and update &.//
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coupling matrix : !.0,.1 = &.0,.12'3 (0,0)

&.0,.12'3 = &''72 ∗ 9
:

;<
<"

.0=.1
&:2'3 ∗ &''72

&.+,-.) = &''72 ∗ ∑: +:
:?

. &:+,-.)



Major cycles and minor cycles
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Image-Based Deconvolution Limitations

• Pixelisation and gridding effects

• Need infinite CCs to CLEAN an unresolved source that lies between pixels

• Out-of-field sidelobes from in-field sources alias back into the image

• Convolutional gridding is not a pure interpolation — also smoothing

• Limited accuracy of PSF sidelobes

• Due to wide-field effects and the imaging approach

• Due to computational limitations (limited oversampling, w-planes, etc.)

• Coupling of MSMFS scales and terms
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Image-Based Deconvolution Limitations

Common solution:

Image residual visibilities and iteratively improve sky model 

• e.g. Cotton-Schwab CLEAN:

1. Do a shallow CLEAN

2. FFT CLEAN component image to the uv domain

3. “De-grid” to form model visibilities and subtract from observed visibilities

4. Form residual image and return to 1 (unless converged)

• Visibility subtraction is accurate and avoids many of the limits

• Use a source finder on restored images to build model images?

• Accurate centroiding.

• Include residual flux in sky model.
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Imaging and Predicting
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Image 

“invert”

inverse

transform

Visibility 

“predict”

forward

transform



Major Cycle
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Minor Cycle: CLEAN 

down to the sidelobe 

level of brightest pixel 

in the residual image

• Just pass residual 

CLEAN components?

• Accumulate CLEAN 

components?

• Run source finder on 

restored images?

High-accuracy 

generation of model 

visibilities

Subtract model 

visibilities (from 

observed or previous 

residual set)

Image residual 

visibilities
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Example — Edge Features from diffuse emission



Example — Due to snapshotting & pre-conditioning
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Self Calibration
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High Performance Computing
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Straightforward 

data parallelism 

over frequency in 

major cycle

Potential bottleneck 

at the minor cycle

Heavy use of 

multi-threading?

Split into many sub-

images (i.e. facets)?



Summary

• Wide fields of view, wide bandwidths, low frequencies and high 
dynamic range complicate synthesis imaging and deconvolution.

• There are a wide variety of approaches to push the limits, most 
coming with computational overheads.

• More information to come on various topics:

• ASKAPsoft and RTS lectures this afternoon

• Wed: Ionosphere and calibration at low frequencies (Natasha) 

• Wed: Wide-field imaging and mosaicking (Tim)

• Fri: High dynamic range imaging (Ian)

• Fri: Polarimetry (Emil)

• Fri: Spectral line processing (Karen)

• Fri: Transient imaging and detection (Christene)

• Fri: Source extraction and characterisation (Paul and Tobias)
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A few other approaches that were skipped

• The Maximum Entropy Method (MEM) — diffuse structure

• Compressed Sensing — find “CLEAN components” in other sparse 

domains (e.g. the wavelet transform of an image)

• Peeling — generate local calibration solutions for strong sources

• Forward modelling — accurately calculate direction-dep. PSF

• RM synthesis — Image de-rotated “rotation measure” images
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