

Error recognition

Elizabeth Mahony | CASS Research Scientist 2018 ICRAR-CASS Radio School

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

Content heavily borrowed from previous radio schools – thanks to Emil Lenc, Ron Ekers, Allison Peck + lots more I found online.

How to recognize and diagnose errors?

Others less so...

(slide stolen shamelessly from Emil Lenc)

U,v plane vs. image plane

- Check both errors may be more obvious in one plane compared to the other
- Errors also obey the Fourier transform relation use this to your advantage!
 - Large errors in the u,v plane can be virtually insignificant in the image plane
 - Likewise, small undetectable defects in the u,v plane can be very obvious in the image plane
- Additive errors (out-of-field sources, RFI, cross-talk, baseline-based errors, noise)
 V + ε → I + F[ε]
- Multiplicative errors (uv-coverage effects, gain errors, atmospheric effects)
 - V ε → I ★ F[ε]
- Convolutional errors (primary beam effect, convolutional gridding)
 - V ★ ε → I F[ε]
- Goal is to get good image not always worth being a perfectionist about the u,v data...

RFI in the image plane

Sidelobes from nearby bright sources

Primary Beam FWHM

Image: Emil Lenc

Sidelobes from nearby bright sources

The Sun was "near" the calibrator during one of the observing days.

Primary Beam FWHM

Image: Emil Lenc

Sidelobes from nearby bright sources

7 | Error recognition | 2018 ICRAR-CASS Radio School

Calibration errors in the image plane

10 deg phase error for one antenna at one time

20% amplitude error for one antenna at one time

2014 NRAO synthesis imaging workshop

Calibration errors in the image plane

10 deg phase error for one antenna at all times

20% amplitude error for one antenna at all times

2014 NRAO synthesis imaging workshop

Calibration errors in the image plane

A 10 deg phase error is as bad as a 20% amplitude error

2014 NRAO synthesis imaging workshop

Convolution errors

- Generally associated with deconvolving your image
 - CLEAN wisely... use appropriate parameters/algorithms to suit your instrument, science target etc.
- How to tell if you have CLEANed deep enough?
 - Do your artefacts look similar to the psf/dirty beam? -> Not enough.
 - Are there spurious sources in the image? -> Too much, cleaning noise peaks.
 - Use clean masks around sources to only CLEAN where you need to.
- Are you using the appropriate parameters?
 - How much diffuse emission is there? Are you using the best weighting scheme according to your science?

• Do your artefacts look similar to the psf/beam? -> Not enough.

• Do your artefacts look similar to the psf/beam? -> Not enough.

 Are there spurious sources in the image? -> Too much, cleaning noise peaks.

• Use clean masks around sources to only CLEAN where you need to.

Imaging with wide bandwidths

ASKAP-16, 10min scan, central freq.

ASKAP-16, 10min scan, 240MHz BW

Imaging with wide bandwidths

• Use multi-frequency synthesis (mfs) to account for the spectral index of the source

CLEAN (no n-terms)

Imaging with wide bandwidths

• Use multi-frequency synthesis (mfs) to account for the spectral index of the source

MFS-CLEAN (n-terms=2)

Using MS-MFS CLEAN

• If imaging more complicated structure want to deconvolve using different scales – use multiscale CLEAN

Using MS-MFS clean

Normal CLEAN

Multi-scale CLEAN

Dane Kleiner + ASKAP WALLABY team

Missing short spacings

- Sensitive to extended, diffuse emission on short baselines
 - Therefore missing information if only observed on long baselines

ASKAP + Parkes

McClure-Griffiths, Denes, Dickey + GASKAP team

ASKAP incl. short baselines

McClure-Griffiths, Denes, Dickey + GASKAP team

ASKAP without short baselines

McClure-Griffiths, Denes, Dickey + GASKAP team

Wide-field effects

- Many of the difficulties associated with imaging ASKAP/MWA data are due to the large field of view.
- Contribution of many sources can sometimes make it hard to diagnose issues in u,v plane
 - Also a LOT of baselines to inspect manually.
- Extra things to worry about for wide-field imaging:
 - includes non-coplanar array (w-term) effects
 - Also have wide bandwidths need to be careful of bandwidth and timeaveraging smearing
 - Direction dependent effects, particularly important at low frequencies!
 - Requires enormous computing power
 - All of these issues will limit the dynamic range and image fidelity if not accounted for properly!

The w-term

• The w-term describes the deviation from a plane:

$$V(u,v,w) = \int \int I(l,m) e^{-2\pi i [ul+vm-w(\sqrt{1-l^2-m^2}-1)]} dl dm$$

- When imaging large fields, 2-d approximation is not valid (i.e. can no longer assume the sky is flat)
- Different imaging algorithms exist to take the w-term into account

(e.g. w-projection, w-stacking, w-snapshot imaging)

Imaging using w-projection

• Smearing of sources away from phase centre

Imaging using w-stacking: LOFAR 3C196 field

No w-term correction

Using w-stacking

Images: Andre Offringa

An ASKAP example

No w-term correction

No w-term correction + selfcal

29 | Error recognition | 2018 ICRAR-CASS Radio School

- When making an image, the visibilities are gridded as if they were monochromatic (i.e. all same frequency)
 - This means that if we average too much, sources will be smeared in the radial direction
 - Leads to reduction in peak flux
 - This effect gets larger the further the sources are from the phase centre

ATCA image

2048 channel bandwidth (~2 GHz)

2048 x 1 MHz channels

Image: Jamie Stevens

ATCA image

2048 channel bandwidth (~2 GHz)

32 x 64 MHz channels

Image: Jamie Stevens

- The same thing happens if you average too heavily in time, but instead the sources are smeared in the tangential direction
- Bandwidth smearing and time-averaging smearing aren't unique to wide-field imaging, but effects become more pronounced as you move away from the phase centre
- A large field of view means we have to be careful of both these effects
 - Need small channel widths (to avoid bandwidth smearing)
 - Need rapid correlator dumps (to avoid time smearing)
 - -> this is why data rates are so huge!

Bright sources in the field

- Peeling 101:
 - Subtract all other sources in the field
 - Direction-dependent calibration towards the bright source (or phaseshift + calibrate bright source)
 - Subtract bright source
 - Add back all other sources
 - Another round of phase calibration

Bright sources in the field

- Good calibration is crucial!
 - Need a good model
- In this case, residual delay offsets on the long baselines meant that the bright source could not be effectively removed

Bright sources in the field

 Removing artefacts often reveals the next problem to deal with...

Direction dependent effects

- Each antenna looks through different patch of ionosphere
- Phases change across the antenna aperture
- Need to calibrate different directions separately
 - -> direction-dependent calibration

Direction dependent effects

After direction-independent calibration and selfcal:

Image credit: R. van Weeren

38 | Error recognition | 2018 ICRAR-CASS Radio School

Direction dependent effects

After direction-dependent calibration:

Image credit: R. van Weeren

39 | Error recognition | 2018 ICRAR-CASS Radio School

Without direction-dependent calibration

LOFAR 150 MHz, 10hrs int. 14x18" resolution

Mahony+ 2016

With direction-dependent calibration

6x6" resolution

Mandal, Shimwell, Hardcastle, Tasse + LOFAR SKSP

Can you do your science with it?

Can you do your science with it?

Can you do your science with it?

- You can make the best looking image in the world, but is it useful?
 - Is the flux scale correct?
 - Are your sources at the right positions?
 - Do you recover reliable spectral indices?

ASKAP validation tool

Summary – some tips on how to spot errors

- Look at your data
 - In u,v, plane:
 - Don't just plot amp vs. time, look at other properties as well
 - i.e. real vs. image, amp vs. uvdist, time vs. phase, freq vs. amp
 - In image plane:
 - Look for patterns in any artefacts (know your Fourier transforms!)
 - i.e. odd vs. even, ringing, image larger f.o.v
 - Check off source noise is it what you expected?
 - Try taking your image/model and FT back to u,v, plane is it what you expected?
- Flag bad data no data is better than bad data

Summary – some tips on how to spot errors

- Check data after each processing step
 - Much easier to diagnose errors one at a time then if there are multiple errors propagated through the data reduction process
- What is your definition of the 'perfect' image?
 - What is your science goal?
 - Do you need high-dynamic range?
 - Are you focused on a particular target?
- Really look at your data!

