Polarimetry 2018 ICRAR/CASS Radio School

Emil Lenc | Senior Research Scientist 05 October 2018

KEEP CALM CARRY ON WITH POLARIMETRY

CSIRO ASTRONOMY & SPACE SCIENCE www.csiro.au

Polarimetry

- What is it?
- Why study it?
- How do we measure things
- Things to worry about
- Pop Quiz

- Electromagnetic waves can be polarised and the polarisation can be defined as the behaviour of the electric field with time.
- Natural radiation tends to be randomly polarised, such that the orientation of the electric field is completely random with respect to time.
- Astrophysical processes like synchrotron radiation can emit partially polarised emission, but never 100% polarised.
- Interstellar matter can polarise random background emission or de-polarise polarised background emission.
- Waves can be linearly and/or circularly polarised

 χ is the ellipticity; ψ is the position angle

 $\eta, \qquad \xi = E_y$

Credit: D. McConnell

Poincaré Sphere

- Poles represent circular polarisation
- Equator represents linear polarisation
- Longitude represents tilt angle
- Latitude represents axial ratio

- Poles represent circular polarisation
- Equator represents linear polarisation
- Longitude represents tilt angle
- Latitude represents axial ratio

Poincaré Sphere

For imaging, convenient to have parameters with units of power rather than amplitudes, angles and ratios.

Stokes Parameters

 $I = E_X^2 + E_Y^2 \qquad I = E_R^2 + E_L^2$ $Q = E_X^2 - E_Y^2 \qquad Q = 2E_R E_L \cos(\delta_{RL})$ $U = 2E_X E_Y \cos(\delta_{XY}) \qquad U = 2E_R E_L \sin(\delta_{RL})$ $V = 2E_X E_Y \sin(\delta_{XY}) \qquad V = E_R^2 - E_L^2$

Stokes I - Total intensity

- Stokes Q and U Completely specify linear polarisation
- Stokes V Completely specifies circular polarisation

 $I^2 = Q^2 + U^2 + V^2$

Why do Polarimetry?

Why do Polarimetry?

- The Universe is magnetised!
 - Polarimetric observations provide insight into magnetic fields.
 - Magnetism is a fundamental force.
 - The origin, structure and evolution of magnetic fields are key open questions in astrophysics.
- Within our galaxy
 - Interstellar medium (ISM), stars, pulsars, HII regions, masers.
- Within other galaxies
 - Radio galaxies, lobes, hot-spot interaction, radio lobes
- Cosmic Magnetism
 - The inter-galactic medium, the cosmic web

Why do Polarimetry?

- High-z seed fields (Widrow 2002; Subramanian 2007)
- Intergalactic Medium
- Intracluster Medium
- Interstellar medium
- Galactic Centre (Crocker et al. 2010; Ferrière 2010)
- > Main sequence star: HD 215441 $B_0 \approx 34 \text{ kG}$ (Babcock 1960)
- White dwarf: PG 1031+234 (Schmidt et al. 1986)
- Pulsar: PSR J1847-0130 (McLaughlin et al. 2003)
- Magnetar: SGR 1806-20 (Kouveliotou et al. 1998, Israel et al. 2005) $B_i \approx 10^{16} \text{ G}$
- Cosmic strings (Ostriker et al. 1986)
- Planck-mass monopoles (Duncan et al. 2000)
 - ** Fridge Magnet ~50 G

- B~10-30 -10-20 G
- B~1-10 nG?
- B~0.1-1 µG
- $B \sim 1 \, \mu G 10 \, mG$
- $B \sim 50 \ \mu G 1 \ mG$
- $B_0 \approx 10^9 \,\mathrm{G}$
- $B_0 \approx 9 \times 10^{13} \text{ G}$
- $B_0 \approx 2 \times 10^{15} \, \text{G},$
- B~10³⁰ G
- B~1055 G

Magnetic filaments in Perseus

(Fabian et al

2008

Credit: B.M. Gaensler

Circular polarisation

-umin

Circular polarisation

-umin

How do we measure with polarisation? Faraday rotation

Long wavelength observations exhibit higher rotation! NB: MWA range is ~I-4 metres

How do we measure with polarisation? Faraday rotation

Long wavelength observations exhibit higher rotation! NB: MWA range is ~I-4 metres

> Average the channels, you must not. Yes, hmmm.

Faraday rotation (MWA)

 $RM = 30.0 \text{ rad } \text{m}^{-2}$

Faraday rotation (MWA)

 $RM = 30.0 \text{ rad } \text{m}^{-2}$

Faraday rotation (MWA)

How do we measure with polarisation? Faraday tomography

Lenc et al. (2016)

How do we measure with polarisation? Faraday tomography

Lenc et al. (2016)

How do we measure with polarisation? Gradient of Stokes Q/U

$$|\nabla \mathbf{P}| = \sqrt{\left(\frac{\partial Q}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial Q}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2}$$

Gradient of Stokes Q and U provides direct imaging of interstellar turbulence - changing of magnetic field orientation with gas motions

How do we measure with polarisation? Polarisation vectors

Total linearly polarised intensity is defined as: $P = \sqrt{U^2 + Q^2}$

A linearly polarised source will have an intrinsic position angle on the sky that is given by:

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q} \right)$$

Together these provide field strength and direction in plane of sky

How do we measure with polarisation? Zeeman splitting

Measure in magnetic field strength through splitting of spectral line into several components in presence of magnetic field

```
V = RCP-LCP \propto B_{los}
```


How do we measure with polarisation? Circular polarisation from synchrotron emission

Circular polarisation from synchrotron emission can provide a direct measurement of field strength and direction (effect is small and is less than 0.1% of the Stokes I component).

Observations of PKS J0636-2041

22 Polarimetry | 2018 ICRAR/CASS Radio School

Faraday rotation - Broadband modelling

Observations of PKS J0636-2041

Source depolarisation O'Sullivan et al. (2018)

27 Polarimetry | 2018 ICRAR/CASS Radio School

Things to worry about - the ionosphere Things that ionise the atmosphere

Along time ago, In the Galaxy Now, not too fiaway.

A white ago, too close for comfor

Things to worry about - the ionosphere Things that ionise the atmosphere

Along time ago, In the Galaxy Now, not too fiaway.

A white ago, too close for comfor

Things to worry about - the ionosphere Things that ionise the atmosphere

in the Galaxy.

HAARP

Things to worry about - the ionosphere Things that ionise the atmosphere

During the initial setting-up period for the polarization survey, a violent disturbance of the ionosphere occurred during the observations. This was produced by the explosion at 1210 U.T. (2210 E.A.S.T.) on November 1, 1962, of a 1 megaton bomb 10 km above Johnston Island.

away.

Symmetric

Directed

Amplitude

modulation

Vertical-AM

Oblique-AM

Beam

painting

Grid-paint

Line-paint

Sawtooth-sweet

- Mathewson & Milne

HAARP

Things to worry about - the ionosphere Things that ionise the atmosphere

During the initial setting-up period for the polarization survey, a violent disturbance of the ionosphere occurred during the observations. This was produced by the explosion at 1210 U.T. (2210 E.A.S.T.) on November 1, 1962, of a 1 megaton bomb 10 km above Johnston Island.

Things to worry about - the ionosphere Things that ionise the atmosphere

During the initial setting-up period for the polarization survey, a violent disturbance of the ionosphere occurred during the observations. This was produced by the explosion at 1210 U.T. (2210 E.A.S.T.) on November 1, 1962, of a 1 megaton bomb 10 km above Johnston Island.

- Mathewson & Milne

Effect of ionospheric Faraday rotation

CSIRC

Effect of ionospheric Faraday rotation

CSIRC

30

Correcting for the ionosphere

- Accurate to line of sight to satellite.
- Generally simplistic models (but improving).
- Many receivers and satellites required to improve model.
- Data is coarse in time (2 h) and spatially (2.5-5 deg).
- Data not available in real-time.

Calibrating for ionosphere against polarised point sources?

Calibrating for ionosphere against polarised point sources?

Calibrating for ionosphere against polarised point sources?

Calibrating for ionosphere against polarised point sources? Maybe not.

35 Polarimetry | 2018 ICRAR/CASS Radio School

Calibrating for ionosphere against diffuse polarised background

Things to worry about Beam depolarisation

Things to worry about Depth depolarisation

- Similar to beam depolarisation except that it occurs along the line of sight.
- Fluctuations in polarisation angle act to depolarise the signal
- It is particularly prominent at long wavelengths.

Things to worry about XY-phase calibration

 An uncalibrated XY-phase can result in leakage from Stokes U to Stokes V

MWA XY-phase calibration

Assume sky not circularly polarised and rotate Stokes V back into Stokes U

ASKAP XY-phase calibration

- Rotate 3rd axis on one antenna to induce polarisation in to unpolarised sources.
- Or, use on-dish calibrator source to correct for XY-phase (currently in test).

- The beam shape is important for polarisation calibration.
- Poor understanding of beam leads to false polarisation i.e. Q = XX-YY

45 Polarimetry | 2018 ICRAR/CASS Radio School

1. Can this be real? What are we seeing?

- A. lonospheric effects
- B. Faraday rotation
- C. Polarisation leakage
- D. Galactic circular polarisation

1. Can this be real? What are we seeing?

- A. lonospheric effects
- B. Faraday rotation
- C. Polarisation leakage
 - D. Galactic circular polarisation

2. Are you able to identify the cause?

- A. Ionospheric Faraday rotation
- B. Google stock prices
- C. PAF temperatures
- D. Intrinsic source RM

2. Are you able to identify the cause?

- A. Ionospheric Faraday rotation
 - B. Google stock prices
 - C. PAF temperatures
 - D. Intrinsic source RM

3. Dare to solve this ... What is being shown here?

Frequency

- A. Ionospheric Faraday rotation
- B. Linear polarisation
- C. Rotation measure synthesis
- D. Zeeman splitting

3. Dare to solve this ... What is being shown here?

- Frequency
- A. Ionospheric Faraday rotation
- B. Linear polarisation
- C. Rotation measure synthesis
- ✓ D. Zeeman splitting

4. Be adventurous ... What is this?

- A. Solar convection model
- B. A Poincaré Sphere
- C. A Death Star
- D. Faraday rotation

4. Be adventurous ... What is this?

- A. Solar convection model
- ✓B. A Poincaré Sphere
 - C. A Death Star
 - D. Faraday rotation

5. A tricky problem? What's the cause?

- A. An uncorrected XY-phase
- B. Stokes I to U leakage
- C. Ionospheric Faraday rotation
- D. Circularly polarised dust on the telescope

5. A tricky problem? What's the cause?

- ✓A. An uncorrected XY-phase
 - B. Stokes I to U leakage
 - C. Ionospheric Faraday rotation
 - D. Circularly polarised dust on the telescope

6. Don't give up! What's this showing?

- A. Beta radiation
- B. Circular polarisation
- C. EM pulses
- D. Faraday rotation

6. Don't give up! What's this showing?

- A. Beta radiation
- B. Circular polarisation
- C. EM pulses
- D. Faraday rotation

7. Can you identify what this is?

Stokes V

- A. Linear polarisation
- B. Total intensity
- C. Circular polarisation
- D. Velocity of polarisation

7. Can you identify what this is?

Stokes V

- A. Linear polarisation
- B. Total intensity
- C. Circular polarisation
 - D. Velocity of polarisation

8. Do you recognise this person?

- A. Michael Faraday
- B. Henri Poincaré
- C. Abraham Lincoln
- D. George Stokes

8. Can you identify this person?

- A. Michael Faraday
- B. Henri Poincaré
- C. Abraham Lincoln
- ✓ D. George Stokes

9. End of Game Question. What is the typical strength of a fridge magnet?

A. 50 fG
B. 50 μG
C. 50 kG
D. 50 MG
E. 50 G

62 Polarimetry | 2018 ICRAR/CASS Radio School

9. End of Game Question. What is the typical strength of a fridge magnet?

A. 50 fG
B. 50 µG
C. 50 kG
D. 50 MG
✓ E. 50 G

Reading Material

- Cotton, W.D., "Polarization in Interferometry", Synthesis Imaging in Radio Astronomy II, 1999 : http://adsabs.harvard.edu/abs/ 1999ASPC..180..111C - Fundamentals
- Heiles, C., "A Heuristic Introduction to Radioastronomical Polarisation", 2002, ASP, 278 :
- Tinbergen, J., "Astronomical Polarimetry", 1996, Cambridge University Press (Cambridge UK)
- Stutzman, W., "Polarisation in Electromagnetic Systems", 1993, Artech House (Norwood, MA, USA)
- Radhakrishnan, "Polarisation", URSI proceedings, 1990, pp.34
- Hamaker et al., "Understanding radio polarimetry. I. Mathematical foundations. Astronomy and Astrophysics Supplement (1996) vol. 117 pp. 137
- Born and Wolf: "Principle of Optics", Chapters 1 and 10
- Rolfs and Wilson: "Tools of Radio Astronomy", Chapter 2
- Thompson, Moran and Swenson: "Interferometry and Synthesis in Radio Astronomy", Chapter 4
- Lenc, E. Et al., 2017, "The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array", PASA, 34, 40 : <u>http://adsabs.harvard.edu/abs/2017PASA...34...40L</u>
- Lenc, E. et al., 2018, "An all-sky survey of circular polarization at 200 MHz", MNRAS, 478, 2835 : <u>http://adsabs.harvard.edu/abs/</u> 2018MNRAS.478.2835L - demonstration of how to reduce the effects of Stokes I into V leakage as a result of poorly defined beams
- Riseley, C. et al., 2018, "The POlarised GLEAM Survey (POGS) I: First Results from a Low-Frequency Radio Linear Polarisation Survey of the Southern Sky", PASA, accepted : <u>http://adsabs.harvard.edu/abs/2018arXiv180909327R</u> - demonstration of how to reduce the effects of Stokes I leakage into Q/U as a result of poorly defined beams.
- Sault, R.J., 2014, "Initial characterisation of BETA polarimetric response", ASKAP MEMO : <u>ftp://ftp.atnf.csiro.au/pub/people/sau078/</u> memos/askap-1.pdf - example of using a beam rotation to calibrate polarisation.

Look up previous NRAO and ATNF Radio School presentations - there is so much to talk about in polarisation and everyone has their own take on the subject.

CSIRO Astronomy & Space Science Emil Lenc Senior Research Scientist

Emil.Lenc@csiro.au

CSIRO ASTRONOMY & SPACE SCIENCE www.csiro.au

