

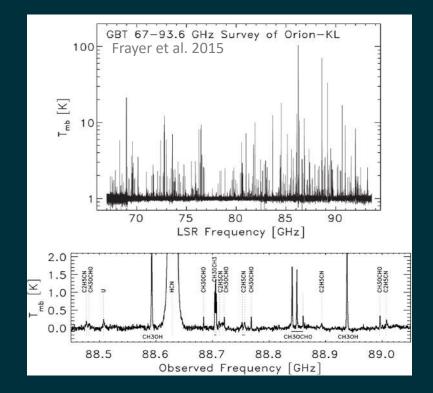
Spectral Line Processing

Karen Lee-Waddell | Research+ Postdoctoral Fellow ICRAR/CASS Radio School 2018

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

Outline

- Motivation
 - What can spectral lines tell us?
- What are spectral lines
 - How do they form, types: masers, recombination, molecular, atomic
- Data processing
 - Doppler correction, continuum subtraction
- Data products



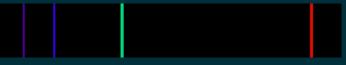
Radio spectral lines

Spectral lines

 narrow emission or absorption features in the spectra of gaseous and ionized sources

 enable us to probe the physical, chemical and dynamical properties of the interstellar medium (ISM) in galaxies



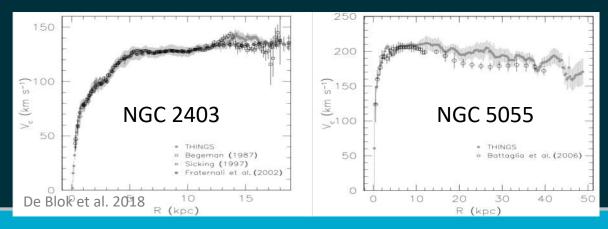


Formation of spectral lines

- spectral lines are quantum phenomena
- quantum systems (atoms or molecules) change their state in discrete amounts of energy (E)
- transition between states caused by **emission** or **absorption** of a photon at a **specific frequency** $(f_o = E_{photon}/h)$

Absorption lines (discrete spectrum)

Information from spectral lines


rest frequencies identify specific atoms and molecules

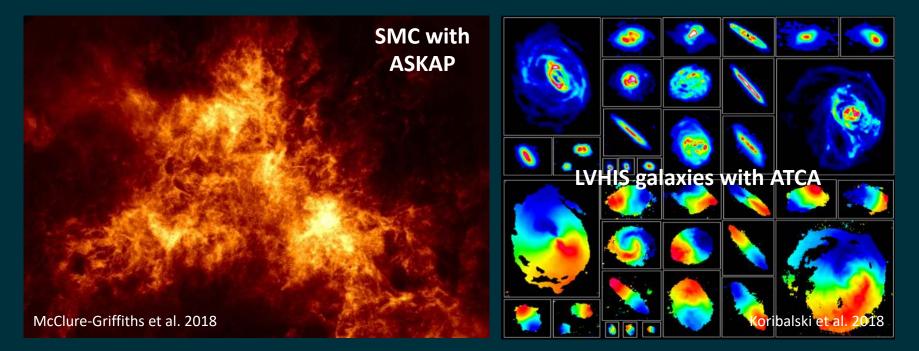
	Rest frequency (GHz)	20		a' an n'a z r	TZOT	D C S	0 2 2 2 2 2 2 2
¹³ CO C ¹⁸ O	110.201		¹³ CH ₃ OH	HCOOCH ₃ HCCOOCH ₃ CH ₃ OH ¹³ CH ₃ OH CH ₃ OCH ₃ CH ₃ OH	¹³ CH ₃ OH CH ₃ CN ¹³ CO C ₂ H ₅ OH	CH ₃ CN ³⁴ SO ₂ U CH ₃ CN CH ₃ OH	CH ₃ CN HNCO CH ₃ ¹³ CN CN CH ₃ CN CH ₃ CN CH ₃ CN CH ₃ CN
C ¹⁸ O	109.782		13 CI	HCO HCCH3	C2	C C C C	CH ³ CH ³
C ³ H ²	18.343	15	-			CH	CH ³ CN
CH ³ OH	6.669, 12.179	15	¹¹ CH ₃ OH	CH ₃ OH ¹³ CH ₃ OH ¹³ CH ₃ OH			CH _{a¹³CN.}
CO	115.271		- ¹³ C	13C			-
CS	48.991, 97.981						1
DCO⁺	72.039	10	-				-
DCO ⁺ H ¹³ CO ⁺	86.754		t i i i				1
H ² O	22.235		-				-
H ² CO	4.83, 14.488	5	t i i i				
HC ³ N	9.098	5	F				N . (-
HCN	88.632		-				n i i i i NNH
нсо⁺	89.189		E . A.		Λ / Λ		
HI	1.420	0	0 from the work which which the work of the				
HNC	90.664						
N ² H ⁺	93.174		330000 330500 331000				
NH ³	23.695, 23.723, 23.870						66/32/1 based 61 - 24
ОН	1.612, 1.665, 1.667, 1.721		Rest Frequency (MHz) Schilke et al. 1997				
SiO	42.821, 43.122, 43.424,						
	85.64, 86.243, 86.847						

Information from spectral lines

- rest frequencies identify specific atoms and molecules
- Doppler shifts provide radial velocities
 - redshifts and Hubble distances of extragalactic sources
 - rotation curves and radial mass distribution

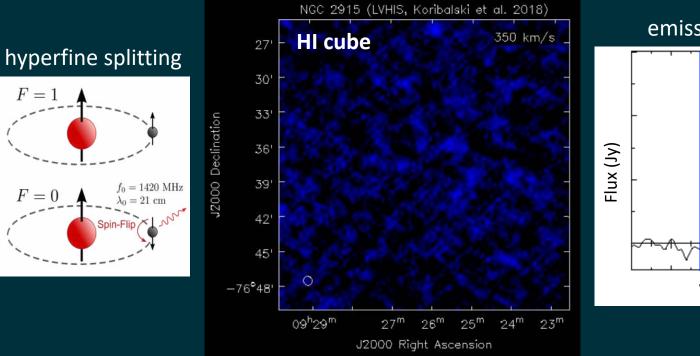
Information from spectral lines

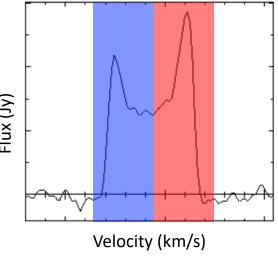
- rest frequencies identify specific atoms and molecules
- Doppler shifts measure radial velocities
 - redshifts and Hubble **distances** of extragalactic sources
 - rotation curves and radial mass distribution
- line broadening can indicate collapse speeds, turbulent velocities and thermal motions
- line intensities can constrain temperatures, densities and chemical compositions



Unique characteristics of radio spectral lines

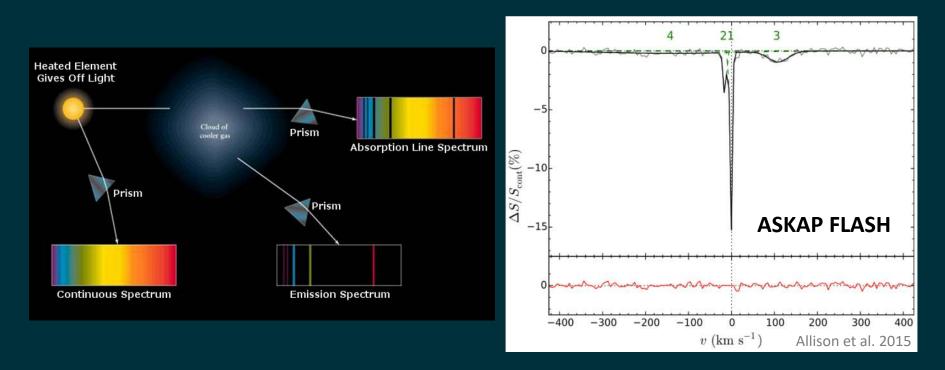
- line widths are smaller than Doppler-broadened → measure gas temperatures and small changes in radial velocity
- stimulated emission \rightarrow formation of natural masers
- radio waves can penetrate dust → detection of line emission from molecular clouds, protostars and disks around AGNs
- frequency can be measured with very high precision → detect small changes in fundamental physical constants over cosmic timescales


Neutral atomic hydrogen (HI)

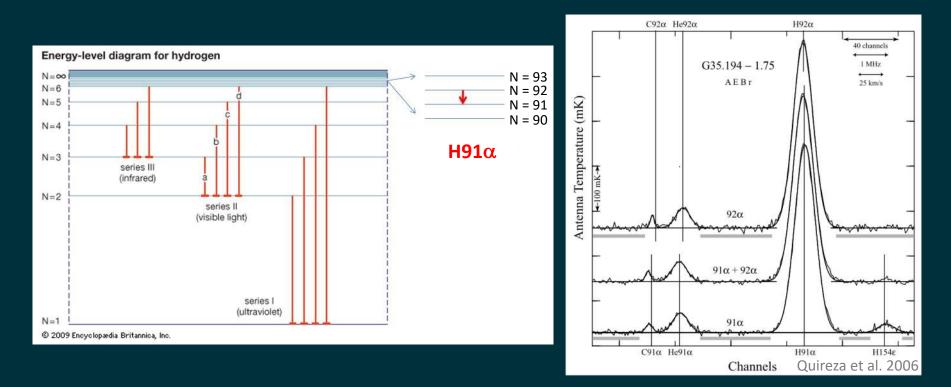


Spectral Line Processing, ICRAR/CASS Radio School 2018 | Karen Lee-Waddell

Neutral atomic hydrogen (HI)



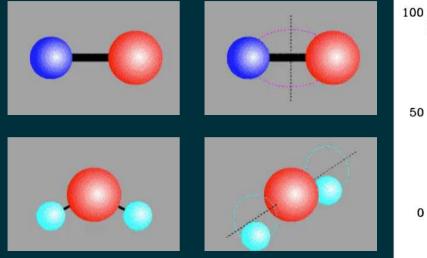
emission spectrum

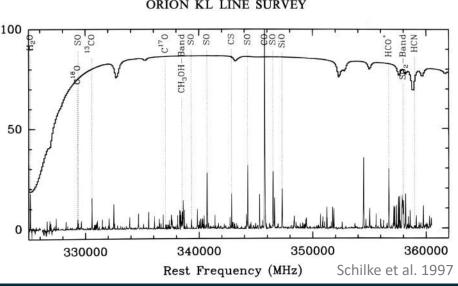


HI in absorption

Spectral Line Processing, ICRAR/CASS Radio School 2018 | Karen Lee-Waddell

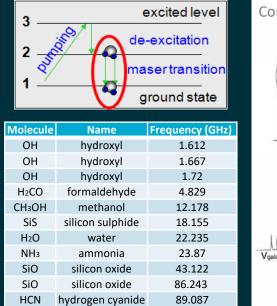
Recombination lines

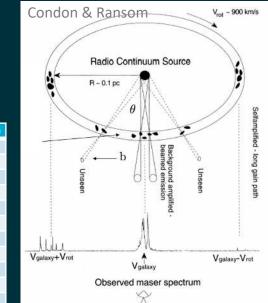




Molecular lines

 molecules can vibrate or rotate around an axis and emit or absorb line radiation




(www.shokabo.co.jp/sp_e/optical/labo/opt_line/opt_line.htm)

Masers

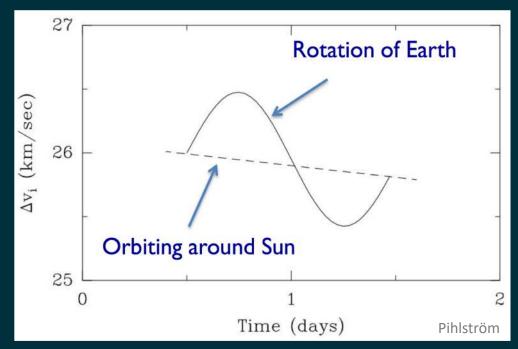
- <u>microwave amplification by stimulated emission</u> of <u>radiation</u>
- requires pumping mechanism for population inversion
- incident photon causes atom/molecule to emit two coherent photons in a beam of emission

Spectral line data

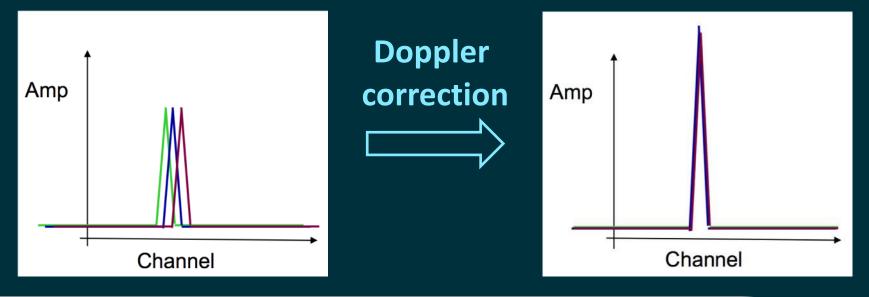
Spectral Line Processing, ICRAR/CASS Radio School 2018 | Karen Lee-Waddell

Telescope properties

	ASKAP	MWA	
Frequency range (MHz)	700 – 1800	80 – 300	
Wavelength range (m)	0.17 – 0.43	1-3.7	
Instantaneous bandwidth (MHz)	300	30.72	
Number of channels	16k	3k	
Spectral resolution (kHz)	18.5	30	
Field of view (deg ²)	30	200 – 2500	


Data Processing

- Splitting, flagging/editing
- Calibration
- Continuum imaging & validation
- Doppler correction / velocity considerations
- Subtract continuum
- Spectral line imaging & validation


Doppler correction

- due to Earth's motion, our velocity with respect to astronomical sources is not constant in time or direction
- if not corrected, the spectral line will slowly drift through spectrum

Doppler correction

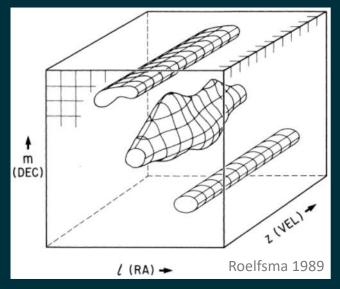
 Doppler track during observations or apply correction during post-processing

Spectral Line Processing, ICRAR/CASS Radio School 2018 | Karen Lee-Waddell

Velocity convention

• relativistic expression:

$$v_{radial} = c \frac{f_o^2 - f^2}{f_o^2 + f^2}$$


• two approximations:

$$v_{radio} = c \left(1 - \frac{f}{f_o} \right) \leftarrow \frac{depreciated}{by IAU}$$

$$v_{optical} = c \left(\frac{f}{f_o} - 1 \right)$$

Continuum subtraction

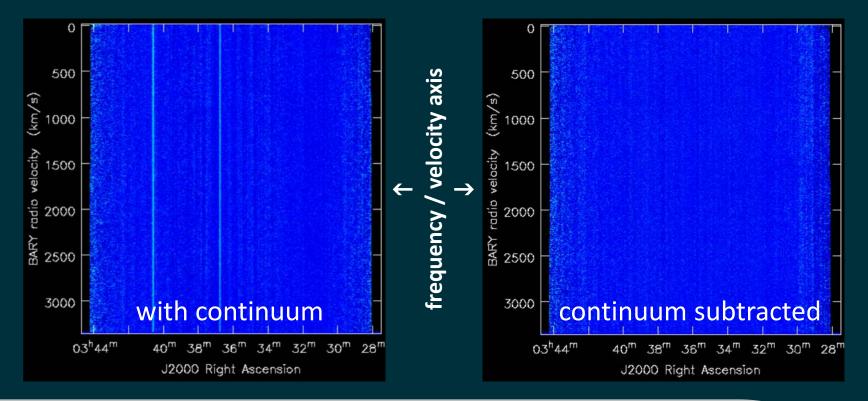
Spectral line cube with two continuum sources – structure independent of frequency – and one spectral line source

- continuum emission complicates the detection and analysis of spectral line data
- can affect image quality of the spectral cube (e.g. deconvolution differences, sidelobes of bright continuum sources)

Continuum subtraction - visibility based

- low order polynomial, fit to line free channels in each visibility spectrum, then subtracted from whole spectrum
 - works well for small field of view

 continuum model (clean model or source catalogue) subtracted from the visibility cube

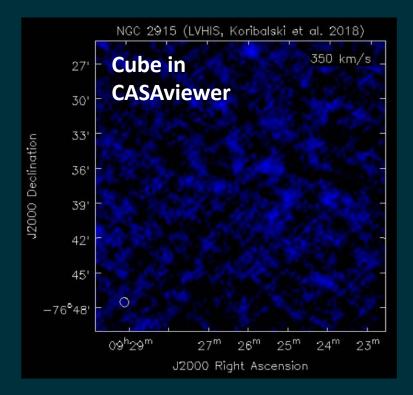

Continuum subtraction - image based

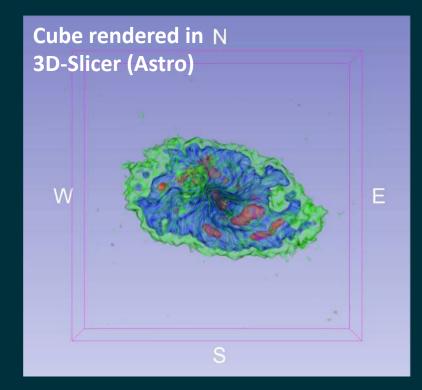
- low order polynomial fitted to and subtracted from each spectrum in the cube
 - better at removing point sources far away from phase centre

 ASKAPsoft option: Savitzky-Golay filter fits and then removes the spectral baseline in each spectrum

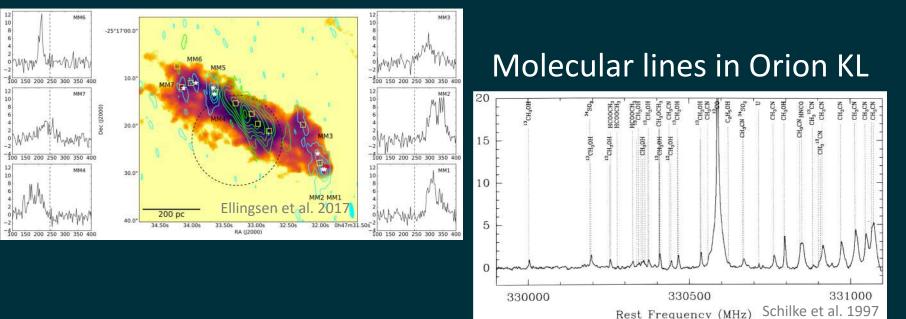
Continuum subtraction

Spectral line imaging


- spatially distributed spectra are interpolated onto a grid to make 3D data cubes with two spatial and one spectral axis
- similar to deconvolution of continuum maps; however, emission structures vary across channels
 - try to keep deconvolution as similar as possible for all channels (same restoring beam, clean to same depth)

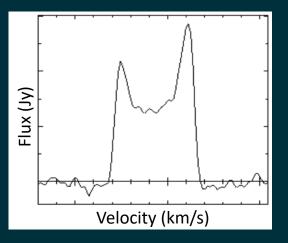

Smoothing

- bring out fainter features
- useful for comparing to other data (different beam sizes & resolution)
- reduce data size
- spatial smoothing (by uv tapering or convolution in image domain) → emphasize extended structures
 spectral smoothing → emphasize low signal-to-noise lines


Data products – image cubes

Data products – spectra

Methanol maser in NGC 253

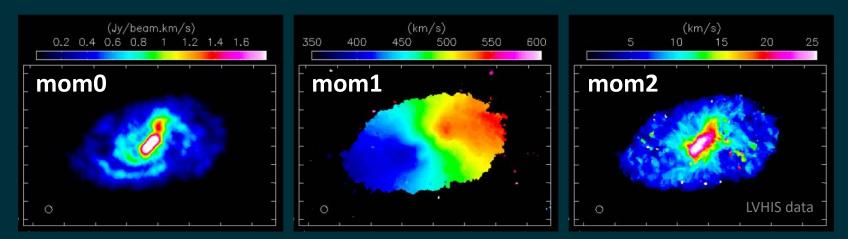


Spectral Line Processing, ICRAR/CASS Radio School 2018 | Karen Lee-Waddell

Data products – HI spectra

- integral of HI profile \rightarrow flux density (F_{HI})
- HI in galaxies is optically thin \rightarrow HI mass

$$\frac{M_{HI}}{M_{\odot}} = 2.356 \times 10^5 \frac{F_{HI}}{Jy \text{ km/s}} \left(\frac{d}{Mpc}\right)^2$$



• dynamical mass \rightarrow total contained mass

$$M_{r} = \frac{rv_{r}^{2}}{G} \rightarrow M_{dyn} = 3.39 \times 10^{4} \frac{a_{HI}}{arcmin} \frac{d}{Mpc} \left(\frac{\frac{1}{2} W_{50}}{km/s}\right)^{2}$$

Data products – moment maps

"moment 0" = total intensity (integrated spectrum) "moment 1" = intensity weighted velocity field "moment 2" = intensity weighted velocity dispersion

References and inspiration

Essential Radio Astronomy ~ J. Condon & S. Ransom

Various online lecture slides from previous radio schools, including but not limited to:

- Spectral Line Observing, ESSEA ~ D. Muders
- Spectral Line Data Analysis, NRAO Workshop ~ Y. Pihlström
- Spectral Line Science, ATNF Radio School ~ O.I. Wong

Thank you!

Karen Lee-Waddell Research+ Postdoctoral Fellow

t +61 2 9372 4129 e karen.lee-waddell@csiro.au

У @KarenLeeWaddell

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

