Evolution of the quasar radio luminosity function below 1mJy

Eliab Malefahlo Mario Santos, Jonathan Zwart & Matt Jarvis

University of the Western Cape SPARCS 20 July 2017

UNIVERSITY of the WESTERN CAPE

Centre for Radio Cosmology

Tools to beat noise

- Long observations (\sqrt{t}) but systematics and confusion!
- New telescopes with long baselines
- **P(D) analysis** (Scheuer 1957):a blind analysis of the probability distribution of a flux in a map to measure total noise contribution from faint sources below the confusion limit.
- **Stacking:** Select population in a deeper catalogue and use their positions to find their counterparts in radio map even if source is not detected. Then get the average

Below the detection threshold

Source counts

With redshift and stellar masses

- Luminosity functions
- (Specific) Star formation rates
- Far-infrared-radio correlation
- Spectral indices as function of flux
- Polarization fraction as function of flux
- Two-point correlation function
- HI mass function + evolution...

A wealth of science to be done with data below the detection threshold

Get more than a statistic

- Lots of science has being done with stacking. However, it gives a single average.
- 'Beyond stacking' (Mitchell-Wynne+ 2014)
- 'Bayesian likelihood analysis' (Vernstrom+ 2014)
- 'Parametric stacking' (Roseboom & Best 2014)
- 'Far beyond stacking' (Zwart, Santos & Jarvis 2015)
- 'Evolution of the quasar radio luminosity function below the detection threshold' (Malefahlo + in prep)
- Need a parametric model for observed binned flux-count , use Bayes theorm with a Poisson likelihood function.

Bayes theorem

$$\mathcal{P}\left(\boldsymbol{\Theta}|\mathbf{D},H\right) = \frac{\mathcal{L}\left(\mathbf{D}|\boldsymbol{\Theta},H\right)\Pi\left(\boldsymbol{\Theta}|H\right)}{\mathcal{Z}\left(\mathbf{D}|H\right)}.$$

The measured flux $S_m = S + n$, where the noise n follows a Gaussian with σ . Assuming that the number of sources in the flux bin $[S_{mi}, S_m i + \Delta s_{mi}]$ follows a Poisson distribution then the likelihood is,

$$\mathcal{L}_i\left(k_i|\boldsymbol{\theta}\right) = \frac{I_i^{k_i} \mathrm{e}^{-I_i}}{k_i!},$$

$$I_i = \int_{S_{min}}^{S_{max}} \mathrm{d}S \frac{\mathrm{d}N(S)}{\mathrm{d}S} \int_{S_{m_i}}^{S_{m_i} + \Delta S_{m_i}} \mathrm{d}S_m \frac{1}{\sigma_n \sqrt{2\pi}} \mathrm{e}^{-\frac{(S-S_m)^2}{2\sigma_n^2}}.$$

Mitchell-Wynne+ 2014

- \mathcal{P} : posterior distribution
- Θ : parameters
- D : Data
- H : model
- Π: Prior
- $\ensuremath{\mathcal{Z}}$: Bayesian evidence

 k_{i} : no: of sources

- I_i : mean no: of sources in bin
- S : Flux S_m : Noisy Flux dN/dS : Source counts σ : Noise rms

Bayestack

Bayestack

Zwart, Santos & Jarvis 2015: Very Large Array (VLA) data stacked at the positions of sources from the VISTA Infra-red Deep Extragalactic Observations (VIDEO) survey.

• Zwart et.al 2015

P(D) analysis + Stacking

Song Chen, Zwart, Sanotos, Jarvis: combined stacking with P(D) analysis to account for confusion.

SDSS II&III quasars – FIRST

$$\frac{dN}{dS} = \frac{dN}{dL}\frac{dL}{dS} = \Phi(L)V_M 4\pi D^2 (1+z)^{1-\alpha}$$

- D_{L} : luminosity distance
- Z : redshift
- *V_m* : (maximum) volume
- $\Phi(L)$: luminosity function model

Fit luminosity function (LF) models to the noisy flux data using a Bayesian stacking technique (Zwart et al. 2015)

$$\Phi(L) = \frac{\Phi_*/L_*}{(L/L_*)^{\alpha} + (L/L_*)^{\beta}}$$

Posterior distribution

Radio luminosity functions (RLF) of optically selected quasars

Optical selections

Problem

- Our RLF of optically selected quasars suffers from optical incompleteness due to:
- Optical selection functions (colour selection)
- Instrumental limitations (fiber collision)
- Bad data

Solution

- Find SDSS luminosity function (corrected for these selection effects) in literature
- Use the optical radio luminosity correlation to predict the true RLF of optically selected quasars

Radio - optical correlation

- Optical emission in a quasar (AGN) comes from accretion of matter into the black hole
- Radio emission mainly comes from jets.
- A good correlation is expected if jets are linked to the accretion rate.

Copyright (c) NRAO/AUI 1999

FIRST - SDSS correlation

Correlation scatter?

- The radio luminosity is not a precise measure of the bulk power in the jets as it also depends on the gaseous environment of the radio source.
- The reddening of optical quasar light might contribute to the scatter.
- Optical variability may increase the scatter and may also depend on luminosity (0.2 mag in B band in the order of years).
- The sampling of the radio-optical planes strongly non-uniform. Serjeant et al. 1998

True RLF of opitical quasar

Conclusions and future work

- No more median stack, Bayesian frame work below is well establish
- code is available BAYESTACK (jz@uwcastro.org)
- We used bayestack to push the RLF an order of magnitude below the detection threshold.
- general steepening of the RLF at low luminosities suggests another source of emission (increasing contribution from SF)
- Or a break down in the link between accretion rate and radio luminosity.
- Deeper data from the new generation of radio telescopes will allow fainter detections above the threshold but using stacking techniques such as the one presented in this project puts one a step ahead to much fainter radio luminosity function
 - To do:
- Include evolution in the model
- Fit other models, Schechter function, triple power-law
- Malefahlo 2017 in prep