

A sharp view of the Coma cluster using uGMRT

Dharam V. Lal, NCRA-TIFR

with due thanks to Ishwara-Chandra C.H., Venturi T. staff of GMRT, ...

Lal, D.V.; *SPARCS* 2017

GMRT upgrade

uGMRT is a major upgrade of the GMRT

- The fundamental goal is to improve
 - major observational capabilities of the original GMRT

(bandwidth, UV-coverage, sensitivity).

- This is a leveraged project built upon existing infrastructure of the GMRT.
- Nearly seamless frequency coverage from 125 MHz to 1450 MHz
 - provided by 4 frequency bands
 - with new receivers.
- New correlator with 400 MHz bandwidth capability.
 - New digital / analog design to maximise instrumental stability and repeatability.
- Expectation noise-limited, full-field imaging in all Stokes parametres for most observing fields.

The project is scheduled to be completed by the end of 2017. ("uGMRT summary" talk)

Lal, D.V.; SPARCS 2017

What would we learn?

Faint synchrotron radiation is an indicator of wide spread B-field

- => we study, both,
 - feedback of outflows driven by galactic BHs and
 - the gravitationally driven evolution of large-scale cosmic filament structure.
- => highlights the potential to use diffuse synchrotron emission to illuminate ICM energisation in both clusters and lower density regions invisible at other wavelengths.

Archetype Coma cluster in the nearby universe!

Prior knowledge

Coma cluster

352 MHz, WSRT image: I 34 x 68 arcsec² (Brown & Rudnick 2011)
408 MHz, DRAO+Arecibo: ~I 35 arcmin radio 'cloud' (Kronberg+ 2007)
I 50 MHz, WSRT: radial steepening of spectral index (Pizzo 2010)

What images do we need?

Deep images containing all information on all spatial scales, information of bright / faint point-sources, information of low-surface brightness diffuse emission, (information of polarisation structure)

We want to

. . .

high-fidelity images in all Stokes as a function of frequency

- fidelity: best high-dynamic range images
- and noise as low as $\sim \mu$ Jy levels.

GMRT

GMRT: I

No. of antennas 26-28 No. of pol'n 1-2 No. of channels 64-256 **Band-width** 7-15 MHz t_{int} (on-source) 2.0 - 2.5 hr FoV 43/81/114/186 arcmin

325 MHz 610 MHz 240 MHz 150 MHz

GMRT: Data reduction 610 MHz

Shown here - 610 MHz

- 27 antennas 128 channels 15.0 MHz bandwidth 5 x 30 min (1 pol.) FoV 43 arcmin
- DR ~ 716 RMS noise ~0.1 mJy/beam ~4.9 arcsec beam this is ~3 x thermal

GMRT: Data reduction 325 MHz

Shown here - 325 MHz

- 28 antennas 128 channels 14.8 MHz bandwidth 4.5 x 40 min (2 pol.) FoV 81 arcmin
- DR ~ 653 RMS noise ~0.35 mJy/beam ~8 arcsec beam this is ~9 x thermal

GMRT: Data reduction 325 MHz

GMRT: Data reduction 240 MHz

Shown here - 240 MHz

26 antennas 64 channels 5.2 MHz bandwidth 5 x 30 min (1 pol.) FoV 114 (81) arcmin

DR ~ 295 RMS noise ~1.1 mJy/beam ~10.8 arcsec beam this is ~7 x thermal

GMRT: Data reduction 150 MHz

Shown here - 150 MHz

- 27 antennas 128 channels 14.2 MHz bandwidth 7 x 20 min FoV 186 (177) arcmin
- DR ~ 678 RMS noise ~5.4 mJy/beam ~21.8 arcsec beam this is ~20 x thermal

GMRT: Data analysis

Thanks to large field-of-view, high sensitivity, high resolution!

- ~30 radio galaxies that are associated with Coma,
- 2 of them for the first time,
- Kim et al. 1994 lists all sources.

• • • • •

Next, if we account for all these sources, subtract these out then we should detect the diffuse (extended halo) emission.

GMRT: Data analysis 150 MHz

Thanks to large field-of-view, high sensitivity, high resolution!

- ~30 radio galaxies that are associated with Coma,
- 2 of them for the first time,
- Kim et al. 1994 lists all sources.
- 150 MHz
 - ~50 arcmin extent 9.8 +/- 0.3 Jy

```
a<sub>(408-150)</sub> 0.77 +/-0.08
```


u-GMRT: Looking deeper 250-500 MHz Shown here - an early test of GWB 250-500 band synthesis on Coma **16** antennas 2048 channels 98.2 MHz bandwidth 9 x 30 min **DR~327 RMS** noise ~0.3 mJy/beam this is ~22 x thermal

u-GMRT: Looking deeper 250-500 MHz

Shown here - GWB 300-500 band synthesis 27 antennas 2048 channels 200 MHz bandwidth 8 x 30 min

DR ~3500 RMS noise ~0.03 mJy/beam this is ~5 x thermal

0.5 deg

u-GMRT: Looking deeper 250-500 MHz

NGC4869

Halo emission

Coma cluster

Thanks to large field-of-view, high sensitivity, high resolution!

- ~30 radio galaxies that are associated with Coma,
- 2 of them for the first time,
- Kim et al. 1994 lists all sources.

The story so far

Coma cluster

A high resolution, high sensitivity, low radio frequency view of the Coma cluster

Deepest and high dynamic range images

A clear detection of Coma halo emission at several radio frequencies

direction-dependent errors antenna pointing errors variation of amplitude/phase within the primary beam atmosphere phase gradients ... (talk by Ishwara-Chandra C.H.)

Imaging using uGMRT

With the new capabilities of the upgraded GMRT

- full frequency coverage across several bands
- from 2048 to 16348 frequency channels
- dual polarisation
- raw data occupies ~90GB (5.3 sec, 30 ant, 2 pol, 2k ch, 7.5 hr)
- Imaging challenges
- We need fast efficient, 'correct', easy-to-use deconvolution

Much work lies ahead to understand / control these (early 'Science Verification' results from uGMRT were encouraging and there are loads of regular uGMRT proposals)

. . .

Lal, D.V.; SPARCS 2017