

e-MERLIN updates (inc legacy surveys)

Rob Beswick (JBCA/e-MERLIN, University of Manchester)

MERLÎN

Outline

e-MERLIN – background & capabilities

Overview of on-going e-MERLIN key projects

The future – what next??

MANCHESTER

e-MERLIN

e-MERLIN (SKA-pathfinder) operating at cm- λ with µJy sensitivity and ~10-220km baselines

MANCHESTER

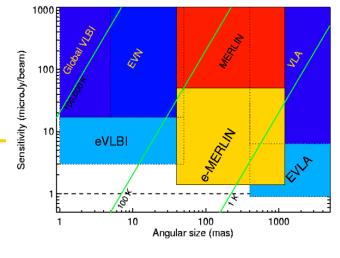
e-MERLIN

e-MERLIN (SKA-pathfinder) operating at cm- λ with µJy sensitivity and ~10-220km baselines

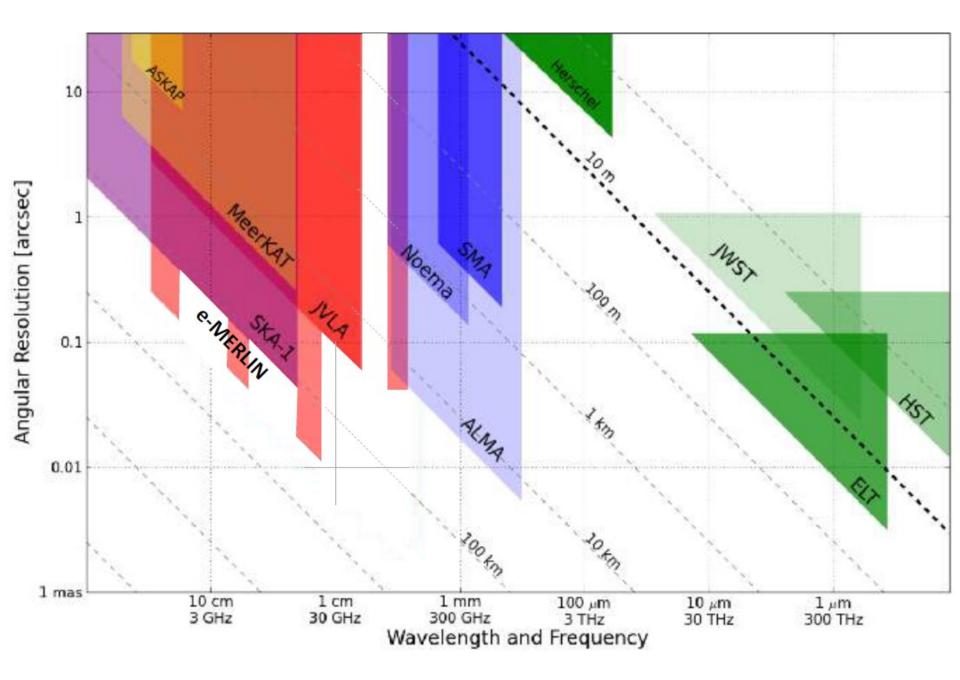
Key/integral part of the EVNproviding 'short' spacing baselines

- Now becoming fully integrated

MANCHESTER



e-MERLIN



Increase bandwidth to
 0.5 GHz (L-band)
 2 GHz (C-band)

- Include Lovell Telescope at C-band
- New telescope optics,feeds, receivers, IF, samplers
- Digital transmission system: 30 Gb/s from each telescope
- Dedicated optical fibre network
 - 100 km installed; 600km leased (total ~700km)
- H-maser freq (1 part in 10¹⁴)std over optical fibre network
- New correlator: wide field imaging; simultaneous line & continuum observations
- EVN recording/transmission for multiple telescopes

Basic capabilities 150, 40, 10 mas resolution ~10 uJy **sensitivity** in typical runs Order of mag better than MERLIN performance < uJy deep fields Wide fields [~7,27 arcmin] Spectroscopy Up to 16 sub-bands;>512 chan/pol; (More with Recirculation) Mix line and continuum Much improved aperture coverage Via frequency coverage **Spectral mapping** 1.3-1.7; 5-7/4-8 GHz **Polarization** (L,R \rightarrow IQUV) Astrometry Goal is < 1 mas wrt ICRF

MANCHESTER

Unique instrument covering particular resolutions scales..

e-MERLIN

Basic Capabilities - See <u>www.e-merlin.ac.uk</u> for more details

	1.5GHz	5GHz	22GHz	Notes	
	(L-band)	(C-band)	(K-band)		
Resolution	150	40	12	Uniform weight at central frequency	
(milliarcseconds)					
Field of View (FoV)	30	7	2	FWHM of 25m dishes; reduced when the Lovell Telescope	
(arcmin)				is included	
Frequency range (GHz)	1.25-1.75	4-8	21-24	Tuneable frequency range	
Bandwidth (GHz)	0.5	2	2	Max bandwidth per polarisation; at C or K-band, 4GHz is	
				possible using a single polarisation.	
Sensitivity (µJy/bm) in a	6-7	4	15	Performance depends on usable bandwidth and observing	
full imaging run				conditions. Figures are for e-MERLIN with the Lovell	
Surface brightness	190	~70	~530	telescope at L and C-band.	
sensitivity (K)					
ICRF astrometric	2	~1	~2	With respect to the ICRF (assuming a typical 3 ^o target-	
performance (mas)				calibrator separation)	
Astrometric repeatability	~0.5	~0.2	~1	Day-to-day repeatability using surveyed or in-beam	
(mas)				sources, and assuming a full imaging run	
Amplitude calibration (%)	2	1	10	Targets for day-to-day repeatability	

Legacy & PATT Proposals

PATT proposals (aka PI-led proposals of all sizes)

- 6 monthly call cycle (spring/Autumn) fully open
- Proposals accepted via Northstar proposals system

See www.e-merlin.man.ac.uk/observe/

- Online Simulator tools and exposure calculators available from e-MERLIN website
- Any use questions : e-merlin@jb.man.ac.uk

Typical oversubscription rates are

- 4-3:1 (all proposals)
- 8-5:1 (proposals requesting Lovell telescope inclusion)

MANCH

Legacy & PATT Proposals

PATT proposals (aka PI-led proposals of all sizes)

- 6 monthly call cycle (spring/Autumn) fully open
- Proposals accepted via Northstar proposals system

See www.e-merlin.man.ac.uk/observe/

- Online Simulator tools and exposure calculators available from e-MERLIN website
- Any use questions : **e-merlin@jb.man.ac.uk**

Existing Large Legacy projects

- Account for ~50% of available observing time
- Competatively allocated programme of 12 large projects
- Cover all science areas planets to cosmology
- Long-term observing status allowing large international teams to build resources and sustain projects.
- Opportunities for new projects will be available... soon!...

legacy programme:

Current e-MERLIN

Addressing the Key science challenges..

12 Large projects covering planet formation \rightarrow cosmology

Galactic Science :

•	e∏ - Pulsar astrometry – Vlemmings/Stappers et al.	160hrs*
•	PEEBLES – planet formation - Greaves et al.	172hrs
•	Feedback processes in Massive SF – Hoare/Vlemmings et al.	450hrs
•	Thermal jets from low mass stars - Rodriguez et al	180hrs
•	COBRaS – wide-field deep galactic survey - Prinja et al.	294hrs

Current e-MERLIN

legacy programme:

Addressing the Key science challenges..

12 Large projects covering planet formation \rightarrow cosmology

Galactic Science :

•	e∏ - Pulsar astrometry – Vlemmings/Stappers et al.	160hrs*
•	PEEBLES – planet formation - Greaves et al.	172hrs
•	Feedback processes in Massive SF – Hoare/Vlemmings et al.	450hrs
•	Thermal jets from low mass stars - Rodriguez et al	180hrs
•	COBRaS – wide-field deep galactic survey - Prinja et al.	294hrs

Extragalactic and cosmology :

•	LEMMINGS – 300 nearby gals - Beswick/McHardy et al.	810hrs
•	LIRGI – LIRGs/ULIRGs - Conway/Perez-Torres et al.	353hrs
•	Extragalactic Jets – Laing/Hardcastle et al	375hrs
•	AGATE – cluster fields - Simpson/Smail et al	330hrs
•	e-MERGE – deep field - Muxlow/Smail/McHardy et al	918hrs
•	Gravitational lenses – Jackson/Serjeant et al	228hrs *
•	SuperCLASS - 1+deg ² supercluster field - Battye et al	832hrs

* Additional allocations pending on-going reviews

e-MERLIN/VLBI Legacy Science

Pulsars, Gravity & Gravitational waves

Time-domain & Transient astrophysics

Planet & star-formation

Galaxy formation & evolution

Cosmic shear & Gravitational lensing

MANCHE

e-MERLIN/VLBI Science

Pulsars, Gravity & Gravitational waves

Time-domain & Transient astrophysics

Planet & star-formation

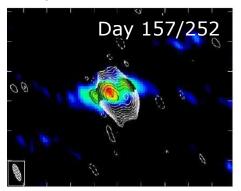
Galaxy formation & evolution

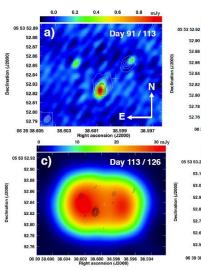
Cosmic shear & Gravitational lensing

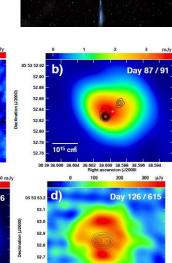
Observatory Time-Domain astrophysics

'rapid response, sensitivity and resolution'

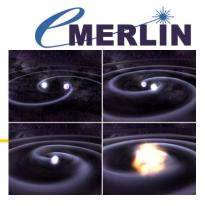
e-MERLIN provides high sensitivity, temporal imaging, mas-astrometry and monitoring of time variable objects.

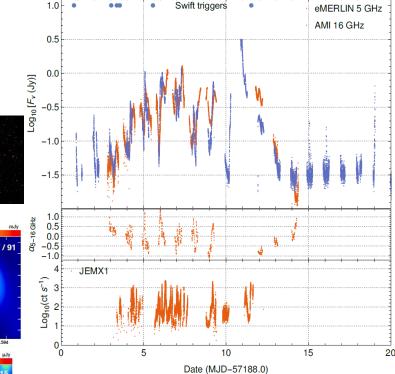

Galactic objects such as XRB, novae through to SNe, TDEs, GRBs, FRBs etc

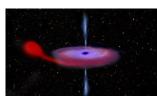

- Most energetic cosmic sources
- High energy particle accelerations
- Time-evolving structures


Evolution of the gamma ray nova (Nova mon) EVN+e-MERLIN, jVLA Chomiuk + 2014 Nature, Healy+ 2017 MNRAS

The University of Manchester

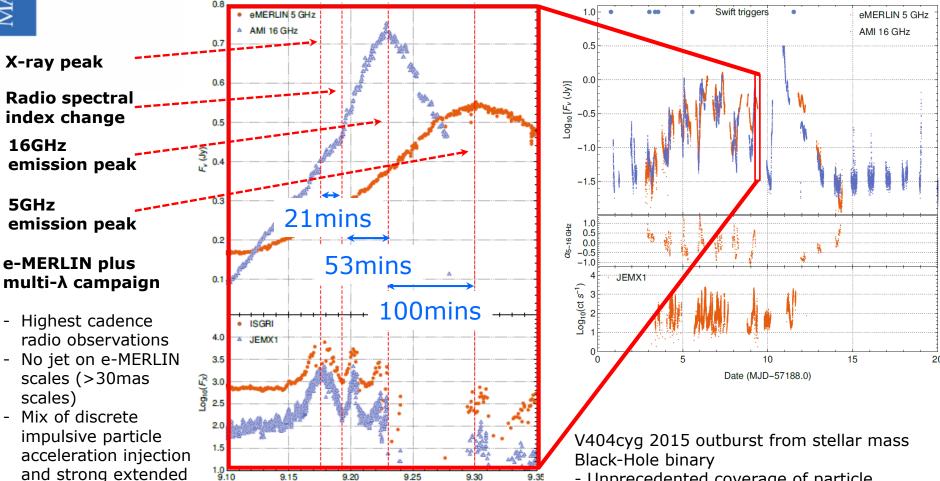

Jodrell Bank




38.63 38.62 38.61 38.60 38.59 38.58 38. Right ascension (J2000)

V404cyg 2015 outburst from stellar mass Black-Hole binary

- Unprecedented coverage of particle acceleration (Fender et al., in prep)


injection events .

Time-Domain astrophysics

'rapid response, sensitivity and resolution'

Date (MJD-57188.0)

- Unprecedented coverage of particle acceleration (Fender et al., in prep)

e-MERLIN/VLBI Science

MANCHESTE

Pulsars, Gravity & Gravitational waves

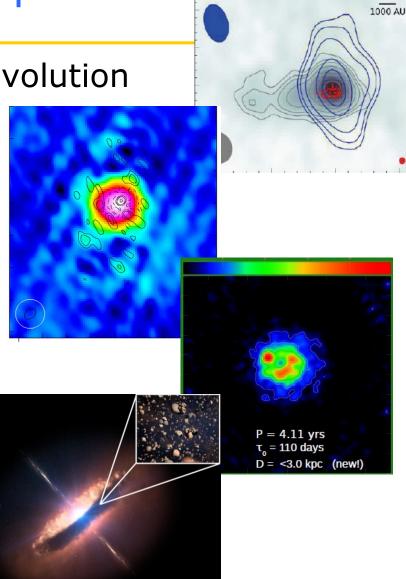
Time-domain & Transient astrophysics

Planet & star-formation

Galaxy formation & evolution

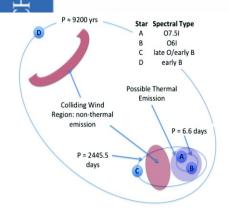
Cosmic shear & Gravitational lensing

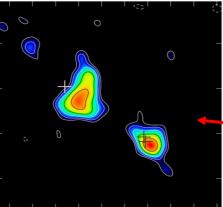
MANCH

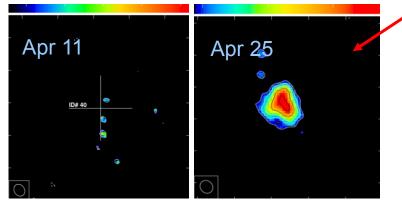

From stars to planets

'sensitivity, resolution, spectral lines'

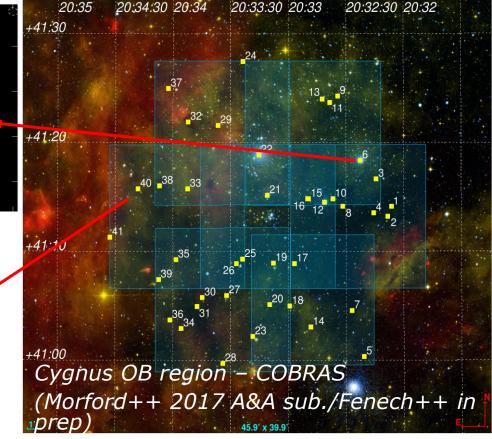
Probing full range of stellar evolution and planet formation


- cm-sized grain formation in protoplanetary disks
- YSOs to evolved stars to stellar end-points
- Stellar outflows
- Stellar evolution
- Molecular astrophysics
- Magnetic fields
- Fundamental physics

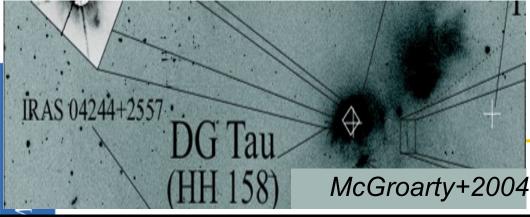

Multiple legacy programmes

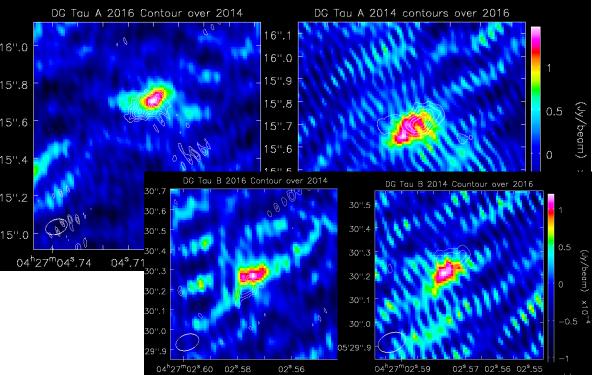


Galactic Star-formation – deep fields



Quadruple star-system with colliding winds




Previously unknown transient sources

Lowest upper-limits of mass-loss rates for majority of these sources

CoBRAS legacy programme (Prinja et al)

- Imaging protoplanetary discs
- DG Tau A (and younger B)
 - 2014 6.47 GHz
 - 2016 7.25 GHz
- Dusty discs detected
 - 10s au-scale
 - Resolve SED
 - Distinguish disc/jet

(Greaves et al. & Pebbles legacy project)

 More sensitivity, plus (new) X-band, 22 GHz will reveal any large grain clusters within few au of DG Tau A

PeBBLES legacy programme (Greaves et al)

e-MERLIN/VLBI Science

MANCHESTE

Pulsars, Gravity & Gravitational waves

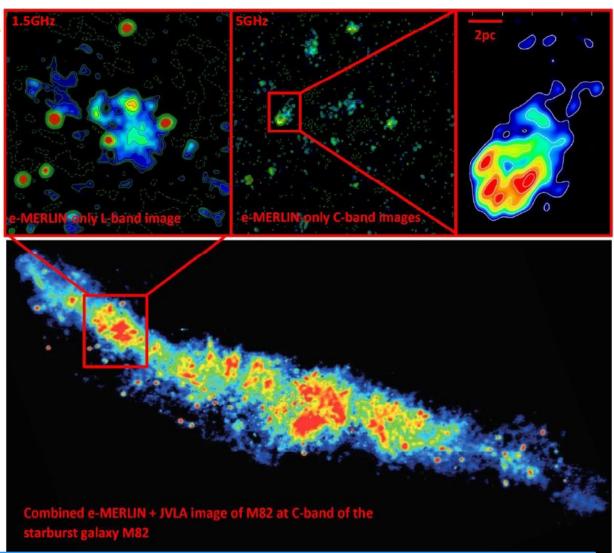
Time-domain & Transient astrophysics

Planet & star-formation

Galaxy formation & evolution

Cosmic shear & Gravitational lensing

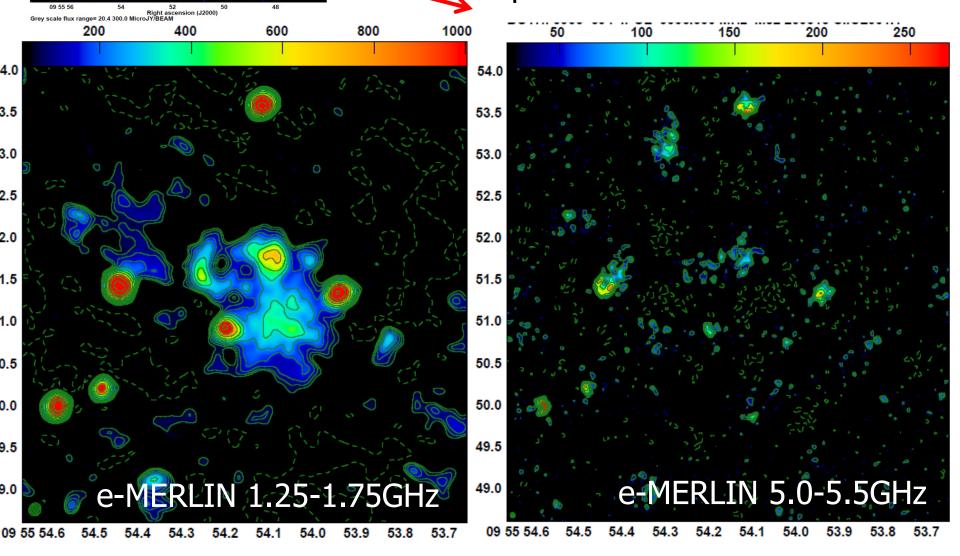
The Local Universe

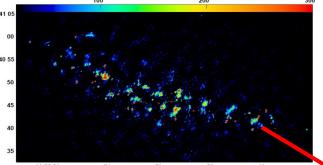

MANCHESTER

Seeing through the dust

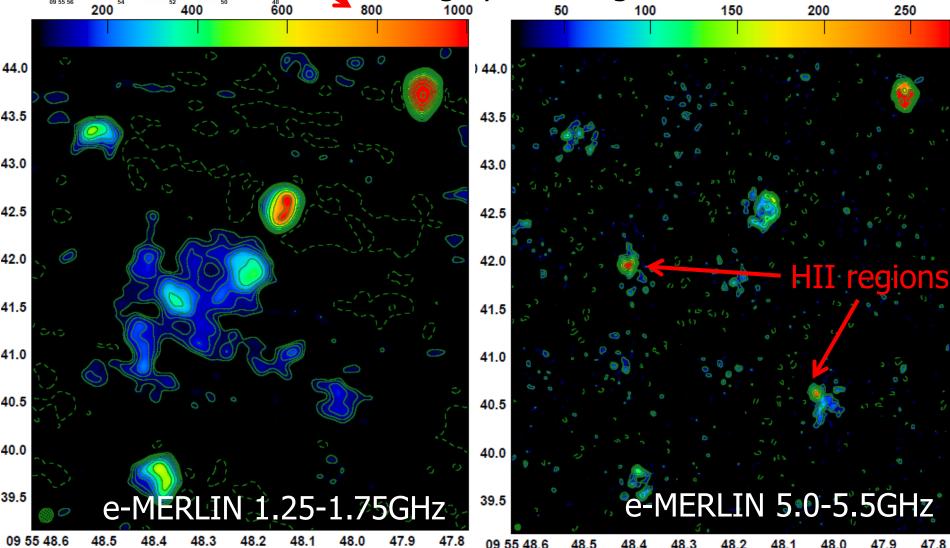
Decomposing individual galaxies into 100s of SF/accretion products – unique laboratories for galaxy evolution

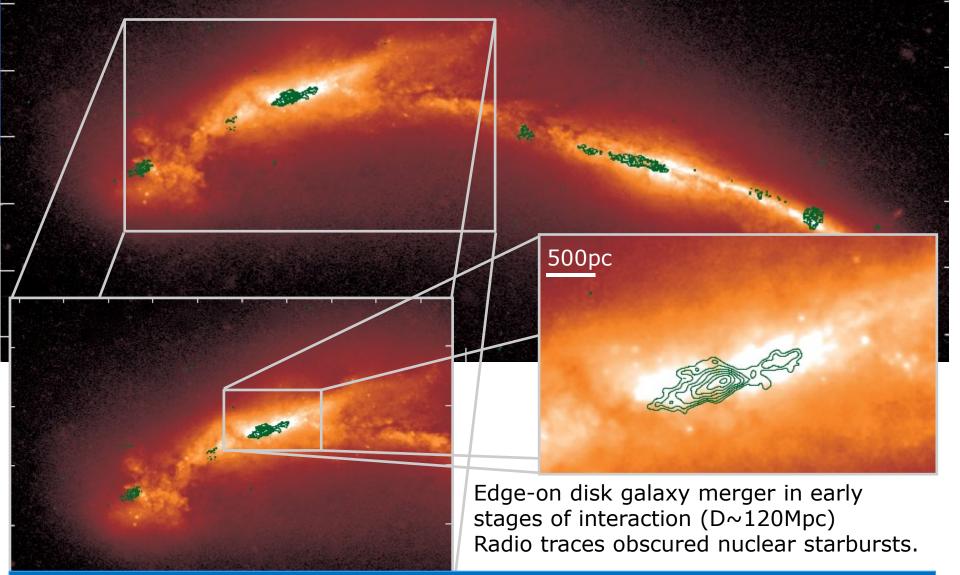
Physics of SF/accretion on sub-pc scales.


Galactic-style physics in galaxies of all environments and classifications



LeMMINGs legacy programme (Beswick/McHardy et al)


New SNR + increasing fraction of HII regions - Multiple SNR break-outs



New SNR + Higher fraction of compact HII regions - Multiple SNR break-outs – expansion into highly inhomogeneous ISM

Merging LIRG NGC6670 HST WFC3/e-MERLIN (Alberdi & LIRGI/GOALS projects)

LIRGI legacy programme (Perez-Torres/Conway et al)

Merging LIRG NGC6670 HST WFC3/e-MERLIN (Alberdi & LIRGI/GOALS projects)

Edge-on disk galaxy merger in early stages of interaction (D~120Mpc)

080000

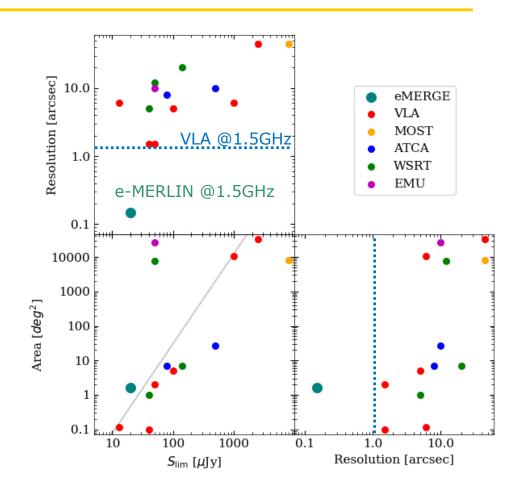
Radio traces obscured nuclear starburst/SF along galaxy disk.

LIRGI legacy programme (Perez-Torres/Conway et al)

no. marting

ŝ.

Rep: Sacar



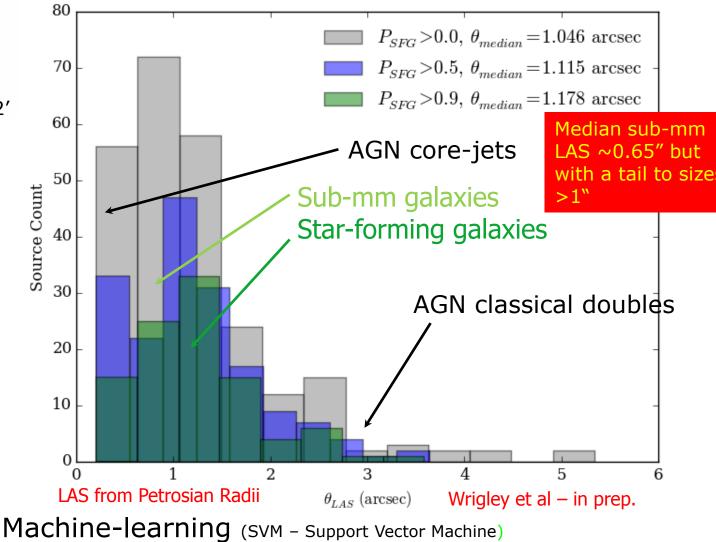
Area/Depth/Resolution..

Traditionally e-MERLIN 'more targeted' objected based programmes.

Large legacy surveys now targeting moderate areas - eMERGE, AGATE, SuperCLASS & CoBRAS

- Not huge areas (typically degs²)
- But different part of <u>resolution space</u>

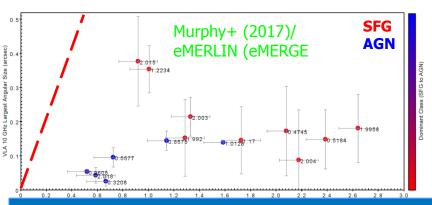
e-MERLIN resolution – actually resolve <u>all</u> sources!! - spatial separation of SF/AGN



Size of the faint radio source populations

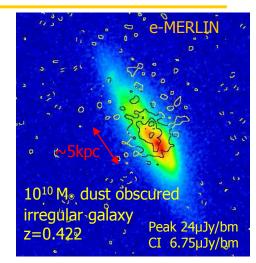
Sample of 248 detected sources within central 12' field from ~90 hrs of data.

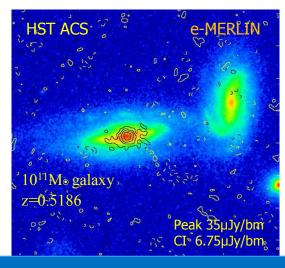
Assign probabilities of being AGN or SF from radio structures and spectral properties...

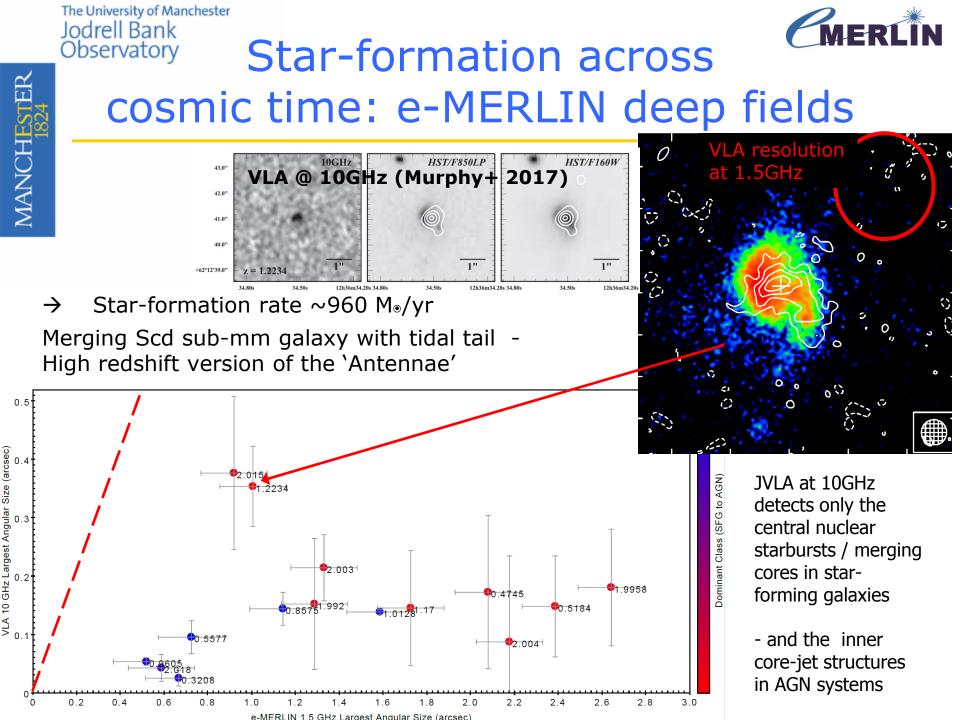


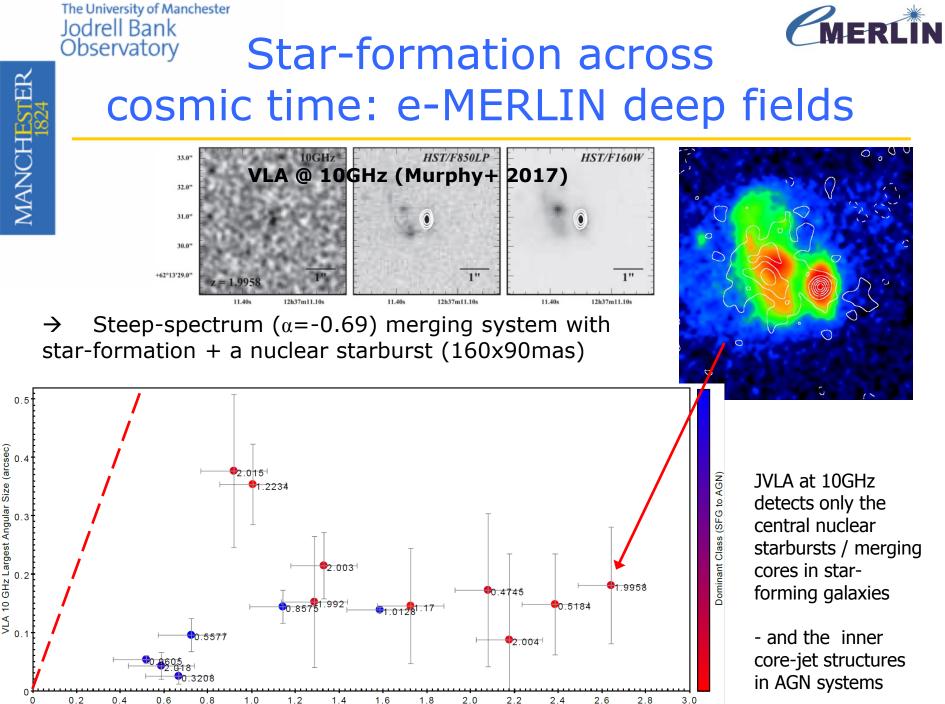
e-MERGE (e-MERLIN key science project deep field) Extragalactic Deep field imaging

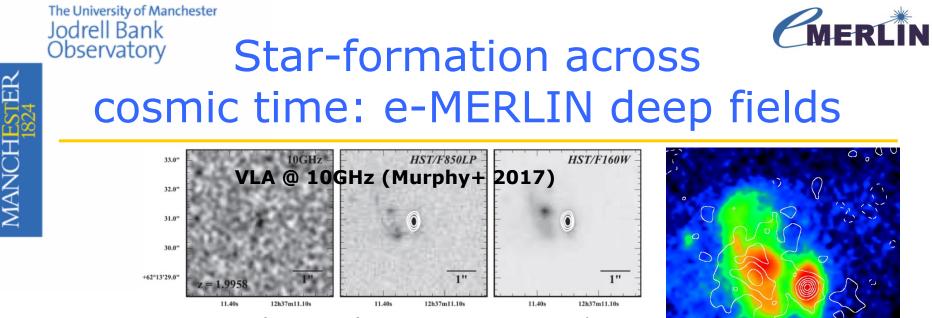
~200mas resolution separates SF and AGN activity and shows detailed feedback where present. SF galaxies dominate 1.5GHz number counts <100µJy


For z<0.5 – Extended starbursts aligned with major axis For z>0.5 – Additional compact nuclear starburst components become more common


JVLA 10GHz (~200mas) show LAS up to x10 smaller


JVLA at 10GHz detects only the central nuclear starbursts in starforming galaxies


- and the inner core-jet structures in AGN systems



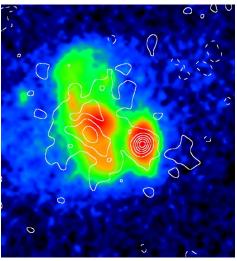
eMERGE legacy programme (Muxlow/Smail/McHardy++)

e-MERLIN 1.5 GHz Largest Angular Size (arcsec)

Steep-spectrum (α =-0.69) merging system with \rightarrow star-formation + a nuclear starburst (160x90mas)

Only at lower (few GHz) frequencies are the is the full extent of the star-formation detected.

- Higher frequencies see compact cores only.


ONLY at e-MERLIN resolutions and sensitivities can fully detect and resolve.

- Spatially separating emissions to providing a direct and unobscured measure AGN & star formation emission

Unique window on the co-evolution of accretion and starformation from $z \sim 0.2 \rightarrow 5$

JVLA at 10GHz detects only the central nuclear starbursts / merging cores in starforming galaxies

- and the inner core-jet structures in AGN systems

e-MERLIN/VLBI Science

MANCHESTE

Pulsars, Gravity & Gravitational waves

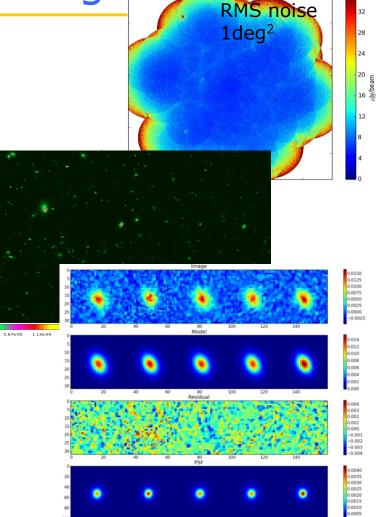
Time-domain & Transient astrophysics

Planet & star-formation

Galaxy formation & evolution

Cosmic shear & Gravitational lensing

Cosmic shear : radio weak lensing


Pioneering radio weak lensing surveys aiming at first radio weak lensing detections. Pathfinder for SKA science

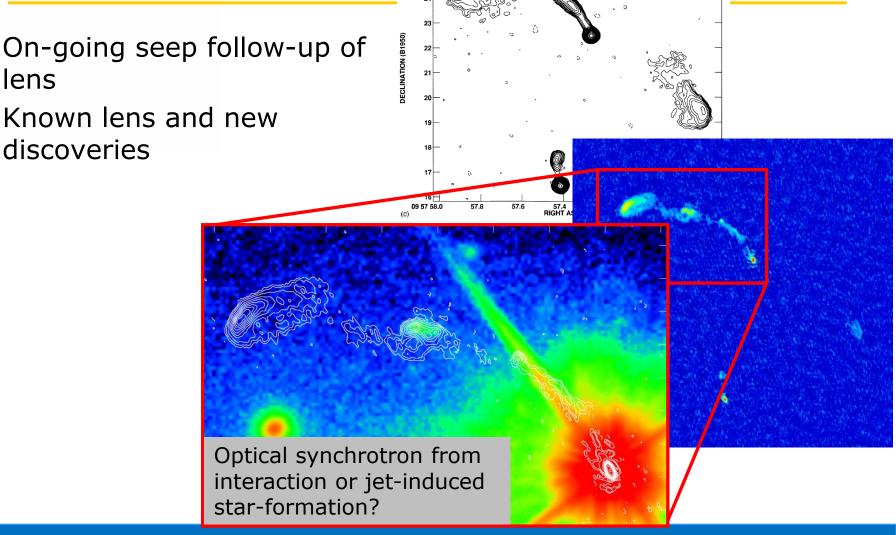
Exploiting e-MERLIN's unique ability to resolve high-z radio starbursts

- precisely defined, stable PSF SuperCLASS field covering multiple supercluster fields

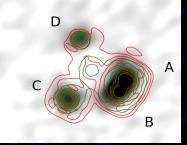
- combined Multi- λ programme

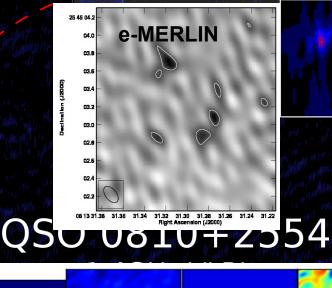
Radio + Optical weak lensing \rightarrow powerful complementary constraints.

SuperCLASS legacy programme (Battye et al)

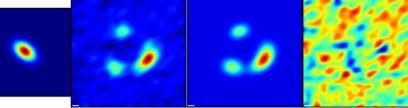

Strong lensing

56 08 25


VLA 8GHz



Strong lens legacy programme (Jackson/Serjent++)


Probing the faintest 3µJy Radio-quiet quasars Intrinsic flux density ~**3uJy** (SKA SCIENCE NOW) r.m.s. = **7uJy**/beam ~0.1"

Multi-resolution / → nature of radio emission (AGN-dominated) & Lens models →Probe galaxy Substructure

T_B~10⁶Κ

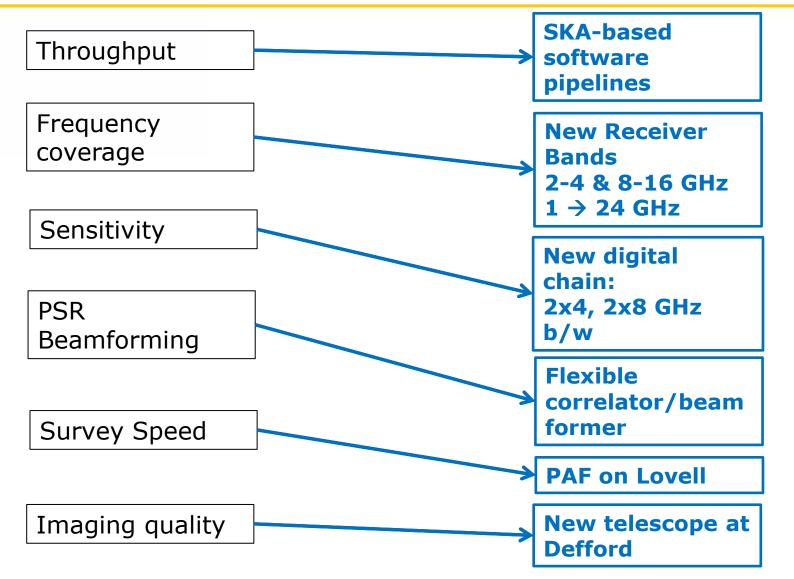
LENS MODEL

What next...?

- a) <u>On-going</u> Operational upgrades
 - Final commissioning of 2GHz bandwidths (C/K-band)
 - Phasing up of array superb PSR/transient instruments ~equivalent to 110m dish
 - Inclusion of new dishes Goonhilly + other? More resolution, more coverage
 - PAF on LT
 - e-MERLIN fully in EVN \rightarrow baselines from 10 to 10,000s km

What next...?

- a) <u>On-going</u> Operational upgrades
 - Final commissioning of 2GHz bandwidths (C/K-band)
 - Phasing up of array superb PSR/transient instruments ~equivalent to 110m dish
 - Inclusion of new dishes Goonhilly + other? More resolution, more coverage
 - PAF on LT
 - e-MERLIN fully in EVN \rightarrow baselines from 10 to 10,000s km


b) An ambitious, yet cost-effective, series of major upgrades

- New SDP-like software pipelines look, feel behave like SKA
- New Frequency bands S-band and X-band (band 5b)
- Cyro-PAF (S-L-band)
- Replacement of Defford telescope (with SKA1-mid dish) allow better performance at >~6GHz
- Digital upgrades → increase bandwidths

MANCHESTER

e-MERLIN Upgrades – science driven upgrades

Upgraded capabilities

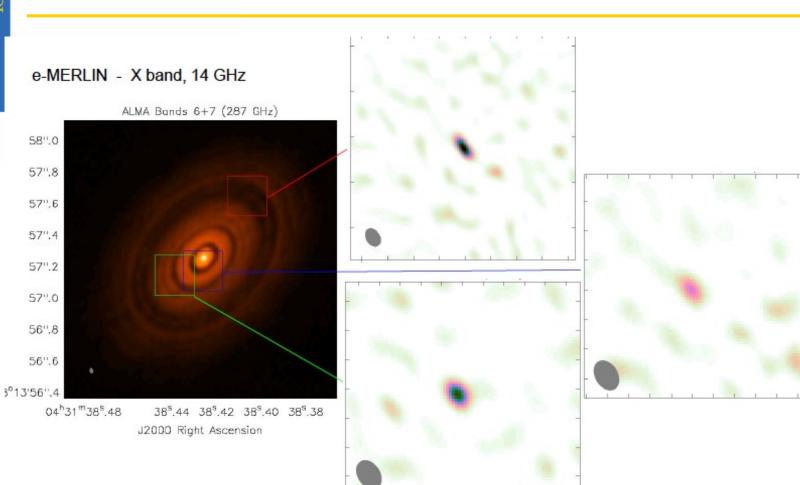
	1.5GHz (L-band)	3GHz (S-band) WP3	5GHz (C-band)		10GHz (X-band) WP4 & WP7		22GHz (K-band)	Notes	
Resolution (milliarcseconds)	150	-	40		-		12	(1) no Goonhilly	
	75	75	2	20		20	12	(2)	WP3,4
Field of View (arcmin)	LT (No-LT)11 (30)	-	LT (No-LT)3 (9)		-		2	(1)	
Field of View (arcmin)	With LT PAF	With LT PAF	LT	No-LT	LT	No-LT	No LT	(3)	WP5
	30	15	3	9	1.5	4.5	2]	
Frequency range (GHz)	1.25-1.75	2-4	4-8		8-15		21-24	(4)	WP3,4
Bandwidth (GHz)	0.5	2	2		2		2	(5)	WP3,4
Sensitivity (µJy/bm) in a full imaging run	6-7	3-4	4-5		4		15	(6)	WP3,4
Bandwidth (GHz)	0.5	2	4		4		4	(5)	WP3,4, 6 ,7
Sensitivity (µJy/bm) in a full imaging run	6-7	3-4	2-2.5		4		4	(6)	WP3,4, 6,7

Science Examples: Planet-forming disks

How to go from Dust \Rightarrow pebbles \Rightarrow planets? Inner 10AU (Saturn) opaque to sub-mm [MMSN]

- Need cm wavelengths to see through dust & detect pebble material
- At 1AU need >~ 3 cm
- Jup: 40 mas, Mars 12 mas
- \rightarrow e-MERLIN at 10 GHz is ideal:

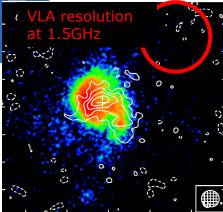
1 uJy/b = 15 K (T=0.15 T=100K)


20 mas resolution

use 5 GHz, 22 GHz to untangle emission

thermal jets, disk winds, synchrotron

MANCHESTER


8-16 GHz simulations

Javier Moldon (e-MERLIN/JBO)

Science example: Galaxy evolution

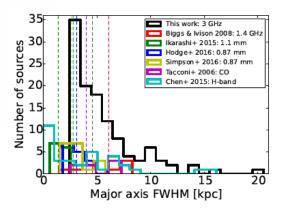
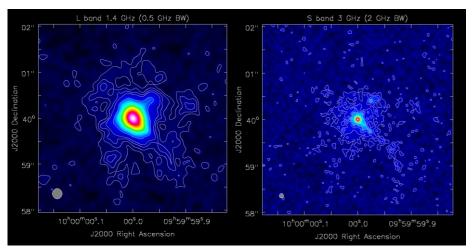



Fig. 9. Distributions of the SMG sizes (major axis FWHM) measured in radio, dust, CO, and stellar emissions. The black histogram shows the sizes of our COSMOS ASTE/AZTEC SMGs as seen at $v_{obs} = 3$ GHz.

- Cosmic star-formation history
- Most star-formation obscured
 radio (SNR, HII) or sub-mm (dust)
- Radio emission is very faint, steep spectrum, and extended ~ 1"

→ Need ~0.1" resolution, ~ 2 GHz e-MERLIN S-band (2-4) GHz ideal 0.1" resolution, increased b/w

Where does star-formation occur? Dust sizes < radio sizes Separate AGN emission

2-4GHz Simulation examples

Summary

- e-MERLIN provides a unique set of capabilities
 - Providing the frequencies and baseline lengths of SKA1-Mid now.. Perfect for (pre-SKA) science demonstration and development..
- e-MERLIN legacy programme covering a wide range of science goals
 - Current programmes first sets of results coming out now
 - New programmes will be considered in future rounds
- Exciting range of new capabilities being considered to further enhance instrument (~15M£ programme)
 - Great capabilities and complementarities
 - ~25% SKA1-mid..., new RXs 1-26GHz..., enhanced survey speeds etc... etc...

www.e-merlin.ac.uk

San And

For the second

Band Sb Corrugated Horn

Building upon and leveraging SKA investments

