) e THREE

Python Lists and Loops

You’ve made it to Week 3, well done!

Most programs need to keep track of a list (or collection) of things (e.g. names) at one time or another, and this
week we’ll show you how. We’ll also talk about the Python loop, which is designed specifically for working
with lists, and show you a few more tricks with strings and integers.

Imagine a Python program to store a list of authors’ names. Given what we’ve taught you so far, you would need
a separately named variable to hold each author’s name:

>>> namel = "William Shakespeare"
>>> name2 = "Jane Austen"
>>> name3 = "J.K. Rowling"

Every time you wanted to do anything you’d need to mention them individually, e.g. printing a list of authors:

>>> namel
William Shakespeare
>>> name2

Jane Austen

This would just get crazy as the number of authors grows! Luckily programming languages provide ways of
efficiently storing and accessing groups of values together: called data structures.

The simplest data structure in Python, a list, is used to store a list of values (not surprisingly!) of any type:

>>> odds = [1, 3, 5, 7, 9]
>>> colours = ['red’, ’blue’, ’green’, ’yellow’]

The first example is a list of odd integers and the second a list of colour names as strings. Lists are created using
a comma separated list of values surrounded by square brackets.

Lists hold a sequence of values (like strings hold a sequence of characters). This means items in the list can be
accessed using subscripting (a.k.a. indexing) just like strings:

>>> odds[0]

1

>>> colours[-1]
’yellow’

Slicing also works like on strings to create a new sublist:

>>> colors[:2]
[’red’, ’blue’]

© National Computer Science School 2005-2009 1



NCSS Challenge (Beginners) WEEK THREE

An empty list is created using just square brackets:

>>> values = []

We can find out the length of a list just like a string:

>>> len(colours)
4

Basically, almost every way of accessing one or more characters in a string also works in a similar way to access
elements from a list. But lists allow you to store any type of values, not just characters.

Lists really simplify our author names problem because we can use a single list (in a single variable) to hold all
the authors’ names:

>>> authors = [’William Shakespeare’, ’Jane Austen’, ’J.K. Rowling’]

and we can access each author using an integer index:

>>> authors[1]
’Jane Austen’

and even better, we can print them out using a loop:

>> 1 =0
>>> i < len(authors):
authors[i]
i+=1
William Shakespeare
Jane Austen
J.K. Rowling

or for that matter check if we have a particular author:

>>> "J.K. Rowling’ authors
True

>>> ’Dan Brown’ authors
False

If we know an element is in the list, we can then find its position:

>>> authors.index(’William Shakespeare’)
0

Notice that these snippets work no matter how many authors we have and where they appear in the list.

Although you can’t modify characters in an existing string, the elements in a list can be modified by assigning o
subscripts and slices (the Python documentation calls strings mutable):

>>> values = [1, 2, 3, 4]
>>> values[-1] = 5

>>> values

[1, 2, 3, 5]

© National Computer Science School 2005-2009 2



NCSS Challenge (Beginners) WEEK THREE

The loop takes 4 lines of code to the names, because we need to initialise the loop counter, check
it is less than the length of the list, and remember to increment it at the end.

Looping over lists is so common that there’s an easier way:

>>> colours = ['red’, ’blue’, ’green’]

>>> col colours:

Soc col

red

blue

green
A loop begins with the keyword and ends with a colon (because it’s a control structure). The col
following is a variable. Each element from the list colours will be assigned to the variable col in turn, and

each time the indented body of the loop will then be run.

From the output above we can see that col is assigned the values 'red’, *blue’, and 'green’ in order because
the statement col is printing out those values.

range

Calling range (n) returns a list of integer values, starting from zero and goingup ton - 1:

>>> range(5)
[0, 1, 2, 3, 4]

This is often used with to loop over a range of integers:
>>> i range(3):
. i
0
1
2

range can also take a second value:

>>> range(5, 10)
[5’ 6! 7l 8! 9]

in which case range returns a list starting at the first value, and going up to but not including the last value.
Finally, if you give range a third value, it steps through the values by that amount:

>>> range(2, 10, 2)
[2, 4, 6, 8]

We can use this trick with negative numbers as well:

i range(10, 0, -1):
i,

Running this example produces the numbers 10 down to 1 on a single line:

10987654321

© National Computer Science School 2005-2009 3



NCSS Challenge (Beginners) WEEK THREE

Notice in this example, the i is followed by a comma. This causes not to add a newline to the
end. So to put a newline after all of the numbers we put a separate outside of the loop.

The way range works should remind you of something else: it works in exactly the same way as slices do for
strings and lists.

Lists can be constructed from strings using the 1ist builtin function.

>>> list(’abcd’)
[!a” lb” lc” ’d’]

This is useful if you need to modify individual characters in a string.

Often we want to split a string into a list of pieces, for example splitting a sentence into individual words. The
split method of strings creates a list of words:

>>> line = ’the quick brown fox jumped over the lazy dog’
>>> words = line.split()
>>> words

[’the’, ’quick’, ’brown’, ’fox’, ’jumped’, ’over’, ’'the’, ’lazy’, ’dog’]

This is useful for checking if a word is in a string:

>>> ’jumped’ words
True

which is different to checking if a substring is in a string:

>>> ’jump’ line # jump appears in the string
True

>>> ’jump’ words # but not as a separate word
False

Another useful string method is join which joins a list of strings back together using a string as a separator:

>>> sep =
>>> values = [’a’, ’b’, ’c’, ’d’, ’e’]
>>> sep.join(values)

’a:b:c:d:e’

You’ll often see a literal string (like the space * ) used:

>>> ’.join(values)
'abcde’

and another common trick is to join a list with an empty string:

>>> ’’ . join(values)
’abcdef’

© National Computer Science School 2005-2009 4



NCSS Challenge (Beginners) WEEK THREE

There are various list methods that can be used to modify lists:

>>> pets = ['dog’, ’mouse’, ’fish’]
>>> pets.append(’cat’)

>>> pets

[’dog’, ’mouse’, ’fish’, ’cat’]

The append method adds an item to the end of the list.

>>> pets.sort()
>>> pets
[’cat’, ’dog’, ’fish’, ’mouse’]

The sort method sorts the items in order, e.g. strings in alphabetical order and numbers in ascending order.

>>> pets.reverse()
>>> pets
[’'mouse’, ’fish’, ’dog’, ’cat’]

The reverse method reverses the order of the entire list.

Just like the string methods we saw last week, notice that calls to list methods have the list they operate on appear
before the method name, separated by a dot, e.g. pets.reverse(). Any other values the method needs to do
its job is provided in the normal way, e.g. ’cat’ is given as an extra argument inside the round brackets in
pets.append(’cat’).

Unlike methods applied to strings, notice that these methods modify the original lists rather than creating new
ones and so they don’t return a value. You can tell this because there is no output when you type them into the
interpreter, so we need to puts pets on a separate line to see what happened to our list.

If we want to print the words across the screen rather than one per line we can add a comma after the
statement like this:

>>> words = [’James’, ’'was’, ’here’]
>>> W words:

w,

James was here

Another example is reading in multiple lines to produce a list of strings:

lines = []
line = raw_input(Q)
line != "’:

lines.append(line)
line = raw_input()

lines

This program will keep reading lines until a blank line is entered, that is, until you press Enter on a new line
without typing anything before it.

Hello World
how are you?

[’Hello World’, ’how are you?’]

© National Computer Science School 2005-2009 5



NCSS Challenge (Beginners) WEEK THREE

Let’s just quickly analyse the last program to confirm you understand loops and lists.

The first line creates an empty list using empty square brackets 1ines = []. The next line reads the first line of
input from the user by calling raw_input. This line is also the initialisation statement for the loop, setting the
variable line ready for the conditional expression.

Now we have the loop itself. Here we are using a loop because we don’t know how many lines there
might be entered by the user. We will stop when raw_input returns us no data, that is, an empty string ’’. The
statement needed to continue reading until the empty string condition is line 1= 7’

It turns out we can abbreviate this further because Python treats the empty string (or a list for that matter) as
equivalent to False. Any other value (e.g. the string 'Hello World’) is True. This means we can write
line != ’’: assimply line:.

Last week we showed you how to call a method on a string object (like upper), and introduced a couple of string
methods for converting strings to uppercase and lowercase, and replacing bits of a string with other strings, and
we saw the split and join methods for strings above. Here are a few more string tricks...

Checking if a string starts or ends with a substring:

>>> s = "hello world"
>>> s.startswith(’hello’)
True

>>> s.endswith(’rld’)
True

Removing whitespace from around a string:

>>> § = abc
>>> s.strip(Q)
’abc’

>>> s.1lstrip()
’abc '’

>>> s.rstrip()
’ abc’

Finding the index of a character in a string:

>>> s = "hello world"
>>> s.find(Cw’)

6

>>> s.find(’x’)

-1

© National Computer Science School 2005-2009 6



	Python Lists and Loops
	1   Data structures
	2   Lists
	3   Authors' names with lists
	4   Lists are mutable
	5   for loops
	6   range function
	7   Lists of characters and words
	8   Joining a list of strings
	9   Appending, sorting and reversing
	10   Loops + lists
	11   More String methods

