[Skip to Content]

Before the very first galaxies formed, the Universe was a sea of hydrogen and helium, gently cooling and collapsing. When the first galaxies formed, they ionised the surrounding gas, turning it from an opaque absorbing cloud into the transparent, ionised plasma we see today: this time is called the Epoch of Reionisation.

This change will have occurred at different rates in different locations in the Universe. When we look at high-redshift galaxies which emit in the radio spectrum, any neutral hydrogen along the line-of-sight will absorb the characteristic HI line at that redshift. For the highest-redshift galaxies, this HI line is shifted from 1.4GHz down to ~150MHz. This is within the frequency range of the Murchison Widefield Array, a radio telescope operated by Curtin University and based in the Murchison Radio Observatory.

This project aims to detect HI absorption in high-redshift radio galaxies using the MWA. As this is a spectral line experiment, it requires a unique data processing pipeline and careful control of calibration and systematics. There are several candidate radio galaxies on which first studies could be made, and once a pipeline is developed and detections made, the project can expand to include other high-z candidates currently being identified from the GaLactic and Extragalactic All-sky MWA (GLEAM) survey. There are thousands of hours of data already taken on several fields which would be suitable for this search. This project is designed to synergise with the project “The First Black Holes with MWA”.

The Universe ionises, transforming from a sea of opaque hydrogen into the complex structures we see today.

The Universe ionises, transforming from a sea of opaque hydrogen into the complex structures we see today.

Co-Supervisor

Dr Nick Seymour

Senior Lecturer

Read More